
Computational Complexity Lecture Notes

Lecture 2

“The Polynomial Hierarchy”
Draft version 0.4

1

2.1 Oracle Turing Machines2

We can equip a generic Turing Machine with arbitrary access to a language, treated as a black box.3

This enables us to visit “parallel computational universes”, where the solution to a specific problem,4

or a class of problems, is free. Enter oracle worlds!5

At first, we define such a model:6

Definition 2.1

For an arbitrary language A ⊆ Σ∗, a Turing Machine MA with oracle A is a multi-string TM
with a special tape, called query tape, and three special states: qq (query state), qyes and qno
(answer states). The computation of the oracle machine MA proceeds like an ordinary TM,
but it has the special ability to write a string on the query tape, and enter the query state qq:
From qq it moves to either qyes, qno, depending on whether the current query string is inA or not.

7

▶ The machineMA can ask during its computation process several questions x ?
∈ A, and use this8

answer to its further computation.9

▶ By the above definition, the machine MA has access to A’s characteristic function A(x) =10

χA(x), and it can query this function and obtain the answer at one computational step.11

▶ The number of queries is bounded by the overall running time of the TM. For example, a12

polynomial-time TM can ask at most a polynomial number of queries.13

2.1.1 Oracle Complexity Classes14

Definition 2.2

Let C be a time complexity class (deterministic or nondeterministic). Define CA to be the class
of all languages decided by machines of the same sort and time bound as in C, only that the
machines have now oracle access to A. Also, we define: CC2

1 =
⋃

L∈C2 C
L
1 .

15

©Antonis Antonopoulos, 2022. This work is licensed under a Creative
Commons Attribution-NonCommercial- NoDerivatives 4.0 International
License. 4b759972aaf7c4cb9dbd09933a5ac2516ab0f6f5 1

For example, PNP =
⋃

L∈NP PL. Note that PSAT = PNP. Also, since the oracle is considered a16

black-box, we have free answers also for the complementary language. For example, PNP = PSAT =17

PSAT = PcoNP.18

2.1.2 Enumerations19

Recall that we can encode TMs as strings, just by encoding the TM’s description using an alphabet,20

and that this encoding is not unique. So, every machine is represented by infinitely many strings, and21

every string can potentially encode a TM¹. So, there exists a function e(x) mapping strings to TMs,22

such that:23

1. For every x ∈ Σ∗, e(x) represents a TM.24

2. Every TM is represented by at least one e(x).25

3. The code of the TM e(x) can be easily decoded.26

Such a function is called an enumeration of TMs (deterministic or nondeterministic).27

When we consider classes like P or NP, we can easily enumerate only these machines, a subclass28

of all DTMs (NTMs respectively): if a function is time-constructible, then by definition, there exists a29

DTM halting after exactly t(n)moves. Such a machine is called a t(n)-clock machine. For any DTM30

M1, we can attach a t(n)-clock machineM2 and obtain a “product” machineM3 = ⟨M1,M2⟩, which31

halts if eitherM1 orM2 halts, and accepts only ifM1 accepts.32

Now, consider the functions pi(n) = ni, i ≥ 1. If {Mx} is an enumeration of DTMs, let M⟨x,i⟩33

be the machine Mx attached with a pi(n)-clock machine. Then, {M⟨x,i⟩} is an enumeration of all34

polynomial-time clocked machines, and it is an enumeration of languages in P, such that:35

▶ Every machineM⟨x,i⟩ accepts a language in P.36

▶ Every language in P is accepted by at least a machine in the enumeration (in fact, by infinite37

number of machines).38

Remark 2.1
This list will not contain all the polynomial-time bounded machines! Remember that it is
undecidable to determine whether a given TM halts in polynomial time on all inputs, due to
Rice’s Theorem.

39

The same holds for NP, just by enumerating all poly-time alarm clocked NTMs. Also, we can40

do the same trick with space, using a yardstick, a DTM that halts after visiting exactly s(n) memory41

cells. We can also enumerate all the functions in FP, and all polynomial-time oracleDTMs or NTMs.42

¹In the case of an invalid encoding, we can easily map this string to the empty TMM0, which has an empty program
and always rejects (M0(x) = 0 for every x ∈ Σ∗).

2

2.1.3 Relativizations of the P vs NP question43

Theorem 2.1

There exists an oracle A ⊆ Σ∗, for which PA = NPA.
44

Proof. Take A to be a PSPACE-complete language.Then:

PSPACE ⊆ PA ⊆ NPA ⊆ PSPACEA = PSPACEPSPACE ⊆ PSPACE

▶ Since A is PSPACE-complete, PSPACE ⊆ PA, because we can reduce in polynomial-time45

a PSPACE computation to a query to a PSPACE-complete language.46

▶ Trivially, PA ⊆ NPA (note that it actually holds for any oracle A).47

▶ NPA ⊆ PSPACEA, because we can simulate each path in the nondeterministic tree, reusing48

the same (polynomial) space, and asking the same oracle questions to A when the machine49

enters a query state. Notice that it is the same technique we used to prove NP ⊆ PSPACE,50

extended to oracle machines.51

▶ PSPACEPSPACE ⊆ PSPACE, since aPSPACEmachine can resolve thePSPACE queries by52

itself, as a subroutine, again by reusing the (polynomial) space needed for each query question53

subroutine.²54

55

But, on the other hand:56

Theorem 2.2

There exists an oracle B ⊆ Σ∗, for which PB ̸= NPB.
57

Proof. We will try to find a language L ∈ NPB \ PB, and a good candidate is:

L = {1n | ∃x ∈ B with |x| = n}

It is easy to see that L ∈ NPB: a NPTM with oracle B can guess all strings y of length n in Σ∗,58

and for each y it asks the oracle if y is in B. The difficult part is to define the oracle B ⊆ Σ∗ such59

that L /∈ PB. Without loss of generality, take Σ = {0, 1}. Let M ·
1,M

·
2, . . . an enumeration of all60

PDTMs with oracle, such that every machine appears infinitely many times in the enumeration. We61

will define B iteratively: B0 = ∅, and B =
⋃

i≥0Bi, where Bi = {x ∈ B | |x| ≤ i}. Let also X62

denote a set, the set of exceptions, which we will use during the proof.63

In the ith stage, we simulate MB
i (1i) for ilog i steps. During the simulation, the oracle machine64

may enter the query state, so we have to determine how to answer questions “Is x in B?”. Note that65

we have already defined Bi−1, so:66

²This also holds for P, i.e. PP = P.

3

▶ If |x| < i, we look for x in Bi−1:67

– If x ∈ Bi−1,MB
i goes to qyes68

– ElseMB
i goes to qno69

▶ If |x| ≥ i, MB
i goes to qno, and x → X , in order to remember this answer, else the definition70

of B would be inconsistent.71

Suppose now, that after at most ilog i steps the simulation stops. The simulated machine either ac-72

cepted, rejected or was stopped before reaching a final state.73

▶ If the machine rejects, we define

Bi = Bi−1 ∪ {x ∈ {0, 1}∗ : |x| = i, x /∈ X}

that is, we add to Bi all the strings of length i that are not in X (recall that we enforced above74

that the members of X are not in B). Hence, 1i ∈ L, and L(MB
i) ̸= L, so we made sure75

that the machine does not decide the language correctly. Of course, for this idea to work, we76

have to ensure that {x ∈ {0, 1}∗ : |x| = i, x /∈ X} ̸= ∅, but that is easy, since each machine77

is simulated for ilog i steps, so it hasn’t time to add all the 2i strings to X , thus {x ∈ {0, 1}∗ :78

|x| = i, x /∈ X} = {0, 1}i \X ̸= ∅.79

▶ If the machine accepts, we define Bi = Bi−1, so that 1i /∈ L, and L(MB
i) ̸= L. The machine80

is made to err again.81

▶ If the machine fails to halt in the allotted time, that is if its polynomial bound is greater than82

ilog i, we set Bi = Bi−1. We have not ensured that L(MB
i) ̸= L, but, remember that each83

machine appears infinitely many times in the enumeration, so we know that this machine will84

be simulated again (and again), so there exists an index i′ large enough such that i′ log i′ will85

surpass the polynomial bound of the machine, and it will enter in a final state, so we will fall in86

the above two cases.87

88

2.1.4 A First Barrier: The Limits of Diagonalization89

As we saw, an oracle can transfer us to an alternative computational “universe”. Recall that we created90

a universe where P = NP, and another where P ̸= NP. One can ask when and how we can traverse91

these universes. If we prove an inclusion between complexity classes, can it be transferred to some,92

or all, oracle worlds?93

Also, notice that diagonalization is a technique that relies on two facts: Firstly, that TMs are94

(effectively) represented by strings, and secondly, that a TM can simulate another TM without much95

overhead in the resources. But these two properties of TMs must also stand for oracle TMs: A TM96

with oracle access to a language A can also be represented as a string, and a TM with oracle access to97

A can simulate another TM with oracle access to A (it just asks the query questions of the simulated98

4

machine to its own oracle). Hence, diagonalization or any other proof technique that relies only on99

these two facts, holds also for every oracle. Such results are called relativizing results. For example,100

PA ⊆ NPA, for every A ∈ {0, 1}∗.101

The above two theorems indicate that P vs. NP is a nonrelativizing result, so diagonalization and102

any other relativizing method doesn’t suffice to prove it. We obviously need something more.103

This rules out the possibility of a super-clever diagonalization technique for proving P vs. NP104

that could elude us.105

So, the first barrier we come across is Diagonalization. During the course, we will stumble on106

two more.107

2.1.5 Cook Reductions108

Using oracles, we can define more general and useful reductions:109

Definition 2.3
A problem A is Cook-Reducible to a problem B, denoted by A ≤p

T B, if there is an oracle
DTM MB which in polynomial time decides A (making at most polynomial many queries to
B).

110

▶ Observe that the above definition is equivalent to A ∈ PB.111

▶ If A ≤p
m B ⇒ A ≤p

T B. This means that Cook reductions are more general than Karp112

reductions, or, that Karp reductions are very specific and restricted Cook reductions.113

▶ By definition, we have that A ≤p
T A.114

Theorem 2.3
P,PSPACE are closed under ≤p

T .
115

Remark 2.2
Is NP closed under ≤p

T ? (cf. Problem Sets!)
116

2.1.6 Relativized Results117

There are many other oracle worlds:118

Theorem 2.4
There exists C ⊆ Σ∗ such that:

PC ̸= NPC = coNPC

119

5

Theorem 2.5
There exist D,E ⊆ Σ∗ such that:

NPD ̸= coNPD and PD = NPD ∩ coNPD

NPE ̸= coNPE and PE ̸= NPE ∩ coNPE

120

2.1.7 Random Oracles121

In the above sections, we proved that ∃A ⊆ Σ∗ : PA = NPA, and also that ∃B ⊆ Σ∗ : PB ̸= NPB.122

One can ask about quantifying this question, e.g. “how many oracles make P equal to NP, and how123

many make them differ?”, or even better “what happens if we choose an oracle at random?”. A naïve124

way to choose a random oracle is to traverse all the (countable) elements ofΣ∗ in lexicographic order,125

and add each element to the oracle set with probability 1/2.126

Now, consider the set U = Pow(Σ∗), and the sets:

{A ∈ U : PA = NPA}

{B ∈ U : PB ̸= NPB}
Can we compare these two sets, by defining a kind of measure, and find which is larger?127

Theorem 2.6 (Bennet, Gill)

PrB⊆Σ∗
[
PB ̸= NPB

]
= 1

128

The above result states than almost all oracles (in a measure-theoretic notion) make P different129

from NP. This means that if we travel to a computational parallel universe at random, then almost130

surely in this universePwill be different fromNP. These kind of results are calledmeasure one results,131

and there are many in Complexity Theory, all proved in the effort to approach unsolved questions,132

by relativizing them to other oracle worlds. For a detailed guide to measure one results, you can see133

[VW97].134

These efforts culminated to the formalization of the Random Oracle Hypothesis by Bennett and135

Gill, which stated informally that “every statement about relativized complexity classes that holds with136

probability one relative to a random oracle, also holds in the unrelativized case”. This hypothesis was137

quite intuitive, but was disproved by S. Kurtz, who presented two counterexamples in [Kur83].138

2.2 The Polynomial Hierarchy139

We defined interesting classes such as PNP. We can also define its nondeterministic analogue NPNP,140

and its complement coNPNP. These are well defined complexity classes, so we can use them as oracles141

to other classes, like PNPNP , NPNPNP and so on. This forms an hierarchy, known as the Polynomial-142

Time Hierarchy, the polynomial analogue of Kleene’s Arithmetical Hierarchy in recursion theory.143

6

Definition 2.4 (Polynomial Hierarchy)

▶ ∆p
0 = Σp

0 = Πp
0 = P

▶ ∆p
i+1 = PΣp

i

▶ Σp
i+1 = NPΣp

i

▶ Πp
i+1 = coNPΣp

i

▶ PH ≡
⋃

i⩾0Σ
p
i

144

So, intuitively, the ith layer Σp
i is defined as NP

with an oracle to the previous layer class Σp
i−1, its

complementary class is Πp
i , and ∆p

i is P with an
oracle to the previous layer class Σp

i−1.
It can be easily shown that these properties hold:

▶ Σp
i , Πp

i ⊆ Σp
i+1

▶ A,B ∈ Σp
i ⇒ A ∪B ∈ Σp

i , A ∩B ∈ Σp
i

▶ A ∈ Πp
i ⇒ A ∈ Σp

i

▶ A,B ∈ ∆p
i ⇒ A ∪B, A ∩B and A ∈ ∆p

i

... ...

∆p
3 = PNPNP

jjTTTTTTTTTTT

55jjjjjjjjj

Πp
2 = coNPNP

66llllllll
Σp

2 = NPNP

hhQQQQQQQQ

∆p
2 = PNP

iiRRRRRRRR
66mmmmmmmm

Πp
1 = coNP

55llllllll
Σp

1 = NP

hhRRRRRRRR

∆p
0 = Σp

0 =

iiSSSSSSSS
66llllllll

= Πp
0 = ∆p

1 = P

145

This is an hierarchy of oracles, and as in recursion theory, we can show that it can be viewed as an146

hierarchy of alternating quantifiers! To this end, we prove that we can “jump” from Πp
i−1 to the next147

Σp
i by adding an ∃ quantifier. This is a generalization of the NP quantifier characterization. Recall148

that a relation R is called polynomially balanced if (x, y) ∈ R ⇒ |y| ≤ |x|k, for some k ∈ N.149

Theorem 2.7
Let L be a language , and i ≥ 1. L ∈ Σp

i iff there is a polynomially balanced relation R such
that the language {x; y : (x, y) ∈ R} is in Πp

i−1 and

L = {x : ∃y, s.t. : (x, y) ∈ R}
150

Proof. We will use induction on i:151

▶ For i = 1, we have that {x; y : (x, y) ∈ R} ∈ P, so L = {x|∃y : (x, y) ∈ R} ∈ NP152

7

(certificate characterization of NP).153

▶ For i > 1, suppose that the result holds for i− 1:154

A ∈ Σp
i−1 ⇒ ∃B ∈ Πp

i−2 : (z ∈ A ⇔ ∃w : (z, w) ∈ B) (1)

We will prove the two directions of the theorem. If there exists such an R ∈ Πp
i−1, we must155

show that L ∈ Σp
i , i.e. there exists NTM with Σp

i−1 oracle deciding L. This machine, on input156

x, guesses a y and asks theΣp
i−1 oracle whether (x, y) /∈ R (we ask the complementary question157

since Σp
i = coΠp

i).158

Conversely, if L ∈ Σp
i , we must show the existence of R. Since L ∈ Σp

i , there exists an NTM159

MA,A ∈ Σp
i−1, which decides L. Using (1), there existsB ∈ Πp

i−2 : (z ∈ A ⇔ ∃w : (z, w) ∈160

B).161

Wemust describe a relationR, such as in the case of NP. The relation must verify a certificate162

for the instance. The main difference here is that we have an oracle machineMA, which during163

its computation can make oracle calls to the Σp
i−1 oracle A.164

Observe that for each query zi thatA responds “yes”, we have a certificatewi such that (zi, wi) ∈165

B. So, we can define R as:166

R(x, y) =“(x, y) ∈ R iffy records an accepting computation ofMA on x , together167

with a certificate wi for each yes query zi in the computation.”168

Now we have to show that {x; y : (x, y) ∈ R} ∈ Πp
i−1. What mustR do to be a correct verifier169

forL? First, it must check that all steps ofMA are legal. This isn’t different from anNP verifier,170

and it takes polynomial time. Secondly, it must check that for every “yes” oracle answer zi, it171

holds that (zi, wi) ∈ B. But B ∈ Πp
i−2, and thus is in Πp

i−1. And also for all “no” queries z′i, it172

has to check that z′i /∈ A, which is another Πp
i−1 question, so {x; y : (x, y) ∈ R} ∈ Πp

i−1.173

174

We can prove the same thing for Πp
i−1, that we can “jump” from Σp

i−1 to the next Πp
i by adding175

an ∀ quantifier:176

Corollary 2.1

Let L be a language , and i ≥ 1. L ∈ Πp
i iff there is a polynomially balanced relation R such

that the language {x; y : (x, y) ∈ R} is in Σp
i−1 and

L = {x : ∀y, |y| ≤ |x|k, s.t. : (x, y) ∈ R}
177

And if we expand this result i times, until we get an R in P, we have a characterization of a Σp
i178

(respectively Πp
i) language with i alternating quantifiers in front of a P verifier:179

8

Corollary 2.2

Let L be a language , and i ≥ 1. L ∈ Σp
i iff there is a polynomially balanced, polynomially-

time decicable (i+ 1)-ary relation R such that:

L = {x : ∃y1∀y2∃y3...Qiyi, s.t. : (x, y1, ..., yi) ∈ R}

where the ith quantifier Qi is ∀, if i is even, and ∃, if i is odd.
180

The above justify the use of the quantifier notation:181

Remark 2.3

Σp
i = (∃∀∃ · · ·Qi︸ ︷︷ ︸

i quantifiers

/∀∃∀ · · ·Q′
i︸ ︷︷ ︸

i quantifiers

) Πp
i = (∀∃∀ · · ·Qi︸ ︷︷ ︸

i quantifiers

/∃∀∃ · · ·Q′
i︸ ︷︷ ︸

i quantifiers

)

182

Example 2.1. Σp
3 = (∃∀∃/∀∃∀), Πp

2 = (∀∃/∃∀)
183

Theorem 2.8
If for some i ≥ 1, Σp

i = Πp
i , then for all j > i:

Σp
j = Πp

j = ∆p
j = Σp

i

Or, the polynomial hierarchy collapses to the ith level.
184

Proof. It suffices to show that: Σp
i = Πp

i ⇒ Σp
i+1 = Σp

i .185

Let L ∈ Σp
i+1, so there exists an R ∈ Πp

i such that L = {x|∃y : (x, y) ∈ R}. But Πp
i = Σp

i186

by assumption, so R ∈ Σp
i . By expanding the characterization again, we have that (x, y) ∈187

R ⇔ ∃z : (x, y, z) ∈ S, S ∈ Πp
i−1. But y, z are polynomial-length certificates, thus their188

concatenation y; z will also be polynomial. So we proved that x ∈ L ⇔ ∃y; z : (x, y, z) ∈ S,189

S ∈ Πp
i−1, and this implies that L ∈ Σp

i .190

191

Corollary 2.3

If P=NP, or even NP=coNP, the Polynomial Hierarchy collapses to the first level.
192

We can define theQSATi problems, which are generalization of SATwith i alternating quantifiers193

applied on the formula:194

9

Definition 2.5 (QSATi Definition)

Given expression ϕ, with Boolean variables partitioned into i setsXi,is ϕ satisfied by the overall
truth assignment of the expression:

∃X1∀X2∃X3.....QXiϕ

where Q is ∃ if i is odd, and ∀ if i is even.
195

As expected:196

Theorem 2.9
For all i ≥ 1 QSATi is Σp

i -complete.
197

These are the “canonical” complete problems for every level of the polynomial hierarchy. One can198

ask what if the whole polynomial hierarchy has a complete problem, but this does not seem plausible:199

Theorem 2.10
If there is aPH-complete problem, then the polynomial hierarchy collapses to some finite level.

200

Proof. Let L is PH-complete. Since L ∈ PH, ∃i ≥ 0 : L ∈ Σp
i . But any L′ ∈ Σp

i+1 reduces201

to L, since it is PH-complete. PH is closed under reductions, so we imply that L′ ∈ Σp
i , so202

Σp
i = Σp

i+1.203

204

The QSATi problems we defined above are of course special cases of the TQBF problem, which205

is PSPACE-complete. From this we immediately have:206

Theorem 2.11
PH ⊆ PSPACE

207

It is an open question whetherPH ?
= PSPACE. Note that if they are equal, thenPH has complete208

problems, so it collapses to some finite level.209

2.2.1 Relativized Results210

Let’s see how the inclusion of the Polynomial Hierarchy to Polynomial Space, and the inclusions of211

each level of PH to the next relativizes:212

Theorem 2.12 (Yao 1985, Håstad 1986)

PHA ̸= PSPACEA relative to some oracle A ⊆ Σ∗

213

10

Theorem 2.13 (Cai 1986, Babai 1987)

PrA[PHA ̸= PSPACEA] = 1
214

Theorem 2.14 (Yao 1985, Håstad 1986)

(∀i ∈ N) Σp,A
i ⊊ Σp,A

i+1 relative to some oracle A ⊆ Σ∗.
215

Theorem 2.15 (Rossman-Servedio-Tan, 2015)

PrA[(∀i ∈ N) Σp,A
i ⊊ Σp,A

i+1] = 1
216

2.3 The Complexity of Optimization Problems217

Let ϕ be a Boolean formula with n variables.. It is easy to see that we can reduce the satisfiability of
ϕ to the satisfiability of two formulas with n− 1 variables:

ϕ ∈ SAT ⇔ (ϕ|x1=0 ∈ SAT) ∨ (ϕ|x1=1 ∈ SAT)
This property is called self-reducibility of SAT. Many other problems are self-reducible, which means218

that they can be reduced to “smaller” instances of themselves.219

Imagine there was a SAT oracle. Then,
we could ask it questions of type
(ϕ|xi=j

?
∈ SAT). So, we could traverse

the self-reducibility tree, asking the ora-
cle at every node, and determine the path
depending on the oracle answers. We
would only need 2n oracle calls to the
alleged SAT oracle.

Example 2.2 (Self-Reducibility Tree of depth n).
ϕ(x1, x2)

ϕ|x1=0

ϕ|x1=0,x2=0 ϕ|x1=0,x2=1

ϕ|x1=1

ϕ|x1=1,x2=0 ϕ|x1=1,x2=1

220

Let FP be the function analogue of P: it contains functions computable by a DTM in polynomial221

time. Also, define the function problem FSAT:222

Definition 2.6 (FSAT)

Given a Boolean expression ϕ, if ϕ is satisfiable then return a satisfying truth assignment for
ϕ. Otherwise return “no”.

223

The above shows that:
FSAT ∈ FP ⇔ SAT ∈ P

since if SAT ∈ P, we can use the self-reducibility property to fix variables one-by-one, and retrieve a224

solution. On the other hand, if we have a solution, we know that a solution exists. The above indicate225

11

that we can extract the solution of the optimization problem by using an oracle to the corresponding226

decision problem.227

2.3.1 What about TSP?228

As before, we can solve TSP using a hypothetical algorithm for the NP-complete decision version of229

TSP (denoted as TSPD):230

▶ We can find the cost of the optimum tour by binary search in the interval [0, 2n], where n is231

the input length. Obviously, the optimal cost will be somewhere in this interval. We need n232

oracle calls for this.233

▶ When we find the optimum cost C, we fix it, and start changing intercity distances one-by one,234

by setting each distance to C + 1.235

▶ We then ask the NP-oracle if there still is a tour of optimum cost at most C:236

– If there is, then this edge is not in the optimum tour.237

– If there is not, we know that this edge is in the optimum tour.238

▶ After at most n2 (polynomial) oracle queries, we can extract the optimum tour, and thus have239

the solution to TSP.240

2.3.2 The Classes PNP and FPNP
241

Recall that PSAT is the class of languages decided in polynomial time with a SAT oracle. We can ask242

a polynomial number of adaptive queries. Since SAT is NP-complete, it holds that PSAT=PNP.243

Now, FPNP is the class of functions that can be computed by a poly-time DTMwith a SAT oracle.
It is easy to see (by using the procedures we described) that:

FSAT,TSP ∈ FPNP

What about completeness in FPNP? It is a well-defined syntactic class, so it deserve to have244

complete problems. But we need reductions between function problems. A generic form of such245

reductions is:246

Definition 2.7 (Reductions for Function Problems)

A function problem A reduces to B if there exists R,S ∈ FL such that:

▶ x ∈ A ⇒ R(x) ∈ B.

▶ If z is a correct output of R(x), then S(z) is a correct output of x.
247

Using this reductions, it can be shown that:248

12

Theorem 2.16

TSP is FPNP-complete.
249

2.4 Summary250

▶ Oracle TMs have one-step oracle access to some language.251

▶ There exist oracles A,B ⊆ Σ∗ such that PA = NPA and PB ̸= NPB.252

▶ Relativizing results hold for every oracle.253

▶ A Cook reduction A ≤p
T B is a poly-time TM deciding A, by using B as an oracle.254

▶ The Polynomial Hierarchy can be viewed as:255

– Oracle hierarchy of consecutive NP oracles.256

– Quantifier hierarchy of alternating quantifiers.257

▶ If for some i ≥ 1 Σp
i = Πp

i , or there is a PH-complete problem, then PH collapses to some258

finite level.259

▶ Optimization problems with decision version in NP (such as TSP) are in FPNP.260

References261

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge Uni-262

versity Press, 1st edition, April 2009.263

[DK00] Ding-Zhu Du and Ker-I Ko. Theory of Computational Complexity. Wiley-Interscience, January 2000.264

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University Press,265

1st edition, April 2008.266

[Kur83] Stuart A. Kurtz. On the random oracle hypothesis. Information and Control, 57(1):40–47, 1983.267

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.268

[VW97] Heribert Vollmer and Klaus W. Wagner. Measure one results in computational complexity theory.269

In Advances in Algorithms, Languages, and Complexity, 1997.270

13

	Oracle Turing Machines
	The Polynomial Hierarchy
	The Complexity of Optimization Problems
	Summary

