
Computational Complexity Lecture Notes

Lecture 3

The structure of NP

Draft version 0.3

1

3.1 Existence of NP-Intermediate Problems2

After years of efforts, there are problems in NP without a polynomial-time algorithm or a complete-3

ness proof. Famous examples are FACTORINGD (the problem of deciding if a given number has4

a factor ≤ k), GI (Graph Isomorphism) etc. So, are there NP problems that are neither in P nor5

NP-complete? And what does that mean? The question goes even deeper:6

The ≤p
T -degree of a language A consists of all languages L such that L ≡p

T A (that is, L ≤p
T7

A ∧ A ≤p
T L). So, ≤p

T -degree is an equivalence relation, and hence it partitions NP to equivalence8

classes. How such a world would look like? There are three possibilities:9

▶ P = NP, thus all languages in NP are ≤p
T -complete for NP, so NP contains exactly one ≤p

T -10

degree.11

▶ P ̸= NP, and NP contains two different degrees: P and NP-complete languages.12

▶ P ̸= NP, and NP contains more degrees, so there exists a language in NP \ P that is not13

NP-complete.14

Are all these plausible views of the computational world? We will show that the second case cannot15

happen!16

Theorem 3.1 (Ladner)

If P ̸= NP, there exists a language in NP, which is neither in P nor NP-complete.
17

Proof. (Blowing holes in SAT)18

The idea is that we will construct a languageA by taking anNP-complete language, and “blow holes”19

to it, so that it is no longer NP-complete, neither in P.20

Let {Mi} an enumeration of all polynomial-time clocked TMs, and {Fi} an enumeration of all
polynomial-time clocked functions. We define A as follows:

A = {x | x ∈ SAT ∧ f(|x|) is even}

Note that if f ∈ FP, then A ∈ NP: just guess a truth assignment, compute f(|x|) and verify.21

©Antonis Antonopoulos, 2022. This work is licensed under a Creative
Commons Attribution-NonCommercial- NoDerivatives 4.0 International
License. 4b759972aaf7c4cb9dbd09933a5ac2516ab0f6f5 1

The key of the proof is f , which, once again, will be defined in stages and assure tha diagonaliza-22

tion. We will define a a polynomial-time TM Mf computing f . Let also MSAT be the machine that23

decides SAT (by assumption is not an polynomial-time machine), and f(0) = f(1) = 2.24

On input 1n, for n steps,Mf starts computing f(0), f(1), . . . iteratively, until it runs out of time.25

Let f(x) = k the last value of f it was able to compute.26

▶ If k = 2i:27

Mf tries to find a z ∈ {0, 1}∗ such thatMi(z) outputs the wrong answer to “z ∈ A” question,28

i.e. Mi(z) ̸= A(z):29

In order to do that,Mf simulates for n stepsMi(z) and the machines involved in the definition30

of A: MSAT(z) and f(|z|), for all z in lexicographic order, until it reaches the time limit. If31

such a string is found in the allotted time, output k + 1, else output k.32

▶ If k = 2i+ 1:33

Mf tries to find a string z such that Fi(z) is an incorrect Karp reduction from SAT to A, i.e.34

MSAT(z) ≠ A(Fi(z)):35

So, Mf simulates for n steps Fi(z),MSAT(z),MSAT(Fi(z)), f(|Fi(z)|) for all z in lexico-36

graphic order, until it reaches the time limit. If such a string is found in the allotted time,37

output k + 1, else output k.38

It is clear by its definition thatMf runs in polynomial time, and f(n+ 1) ≥ f(n).39

We claim that A /∈ P: Suppose, for the sake of contradiction, that A ∈ P. This implies that there40

is an i such that L(Mi) = A. Then, in the case (k = 2i) above, the simulation will never find a z41

satisfying the desired property. The machine will be “stuck” to f(n) = 2i for all n ≥ n0, for some42

n0. Thus, f(n) is even for all but finitely many n, and by its definition, A coincides with SAT on all43

but finitely many input sizes (almost everywhere). Then SAT ∈ P, which contradicts our assumption44

that P ̸= NP!45

We claim thatA is not NP-complete: Suppose now thatA isNP-complete. This means that there46

is a reduction Fi from SAT toA. Then, the case (k = 2i+1) will never find a z satisfying the desired47

property, and again, f(n) = 2i + 1 on all but finitely many input sizes. Then A is a finite language,48

hence in P, contradiction!49

Remark 3.1
The above proofmethod is called delayed diagonalization, because in order to keep f in polyno-
mial time, we’ll have to “wait” for the diagonalization to occur. Notice that f was not increased
until a stage of the diagonalization process was completed.

50

▶ Note that we proved Ladner’s theorem for Karp reductions. You can adjust the proof for Cook51

reductions as well (how?).52

Using the same technique, we can prove an analog of Post’s problem in Recursion Theory:53

2

Theorem 3.2

If P ̸= NP, there exist A,B ∈ NP such that A ≰p
T B and B ≰p

T A.
54

Ladner’s Theorem (generalized by Schöning) implies also that:55

Corollary 3.1

If P ̸= NP, then for every language B ∈ NP \ P, there exists a set A ∈ NP \ P such that
A ≤p

T B and B ≰p
T A.

56

Remark 3.2
So, if P ̸= NP, then NP contains infinitely many distinct ≤p

T -degrees.
57

3.2 Polynomial-Time Isomorphism58

As you know, all NP-complete problems are connected through reductions. These reductions are59

relating the problems based only on their computational difficulty. Wewould like to have some relation60

between languages that reflects structural similarities, ideally some sort of isomorphism, that would61

indicate that these two languages are essentially the same.¹62

Definition 3.1 (Polynomial-time isomorphism)

Two languages A,B ⊆ Σ∗ are polynomial-time isomorphic if there exists a function h : Σ∗ →
Σ∗ such that:

1. h is a bijection.

2. For all x ∈ Σ∗: x ∈ A ⇔ h(x) ∈ B.

3. Both h and h−1 are polynomial-time computable.

Functions h and h−1 are then called polynomial-time isomorphisms.
63

▶ Which reductions are polynomial-time isomorphisms? Note that in the usual case of Karp64

reductions, e.g. A ≤p
m B, we map arbitrary instances of A to very specific instances of B, so65

Karp reductions are usually not surjections.66

¹In general, an isomorphism is a bijective mapping that preserves the structure between two sets, spaces etc.

3

Definition 3.2 (Padding function)

Let L ⊆ Σ∗ be a language. We say that function pad : Σ∗ × Σ∗ → Σ∗ is a padding function
for L if it has the following properties:

1. It is computable in polynomial time.

2. Forall x, y ∈ Σ∗, pad(x, y) ∈ L ⇔ x ∈ L.

3. Forall x, y ∈ Σ∗, |pad(x, y)| > |x|+ |y|.

4. There is a polynomial time algorithm, which, given pad(x, y) recovers y.
67

▶ Languages that have padding functions are called paddable.68

▶ Function pad is essentially a length-increasing reduction fromL to itself that “encodes” another69

string y into the instance of L.70

We can easily find padding functions for well-known NP-complete problems.71

Example 3.1 (SAT). Let x an instance with n variables and m clauses, and y ∈ {0, 1}∗.
Define pad(x, y) is an instance of SAT containing all clauses of x, plus m + |y| more clauses,
and |y| + 1 more variables. We will encode y’s characters encoded as clauses with one literal,
after the originalm clauses of x. In order to avoid decoding ambiguities (where does x end and
y’s encoding starts), we will add a “delimiter” of m repeated appearences of the same clause.
For example:

(x1 ∧ · · ·) ∧ · · · ∧ (· · ·)︸ ︷︷ ︸
x’s m clauses

∧ (xn+1) ∧ · · · ∧ (xn+1)︸ ︷︷ ︸
m copies of (xn+1) clause

∧ (xn+2) ∧ (¬xn+3) ∧ (xn+4) ∧ (xn+5)︸ ︷︷ ︸
y=1011

▶ The first m clauses are x’s original clauses.

▶ We have m additional clauses, copies of xn+1 clause.

▶ The last m + ith, i = 1, · · · , |y|, are either (¬xn+i+1) if y(i) = 0, or (xn+i+1) if
y(i) = 1.

Is that a padding function?
1. It is polynomial time computable, for sure.
2. It doesn’t affect x’s satisfiability, since we added satisfiable clauses with dedicated extra vari-
ables.
3. It is length increasing.
4. Given pad(x, y) we can find where the “added” part begins.

72

4

We would like to have this kind of implication:

(A ≤p
m B) ∧ (B ≤p

m A) ⇔ (A isomorphic to B)

This is essentially a polynomial-time version of Schröder-Bernstein theorem:73

Theorem 3.3 (Schröder-Bernstein)

If there exists a 1-1 mapping from a set A to a set B, and a 1-1 mapping from B to A, then
there is a bijection between A and B.

74

But, unfortunately, this is not sufficient with regular reductions. To achieve this analogy, we need75

to “enhance” our reductions with the previous features (1-1, length increasing, and polynomial time76

computable and invertible). We can use padding functions to transform regular reductions to “desired”77

ones:78

Theorem 3.4
Let f be a reduction from A to B, and pad a padding function for B. Then, the function
mapping x ∈ Σ∗ to pad(f(x), x) is a length-increasing 1-1 reduction. Furthermore, there
exists a polynomial time algorithm, which given pad(f(x), x) recovers x.

79

Using the above Theorem 3.4, we can obtain a polynomial version of Theorem 3.3, with the extra80

assumption of paddability:81

Theorem 3.5 (Polynomial-time version of Schröder-Bernstein Theorem)

Let A and B be paddable languages. If A ≤p
m B and B ≤p

m A, then A and B are polynomial-
time isomorphic.

82

As noted above, finding padding functions for known NP-complete languages (SAT, VERTEX83

COVER, HAMILTON PATH, CLIQUE, , KNAPSACK etc) has been proven an easy task. The84

next step is to assume that maybe all NP-complete languages are isomorphic to each other. This85

would mean that there is only oneNP-complete problemmodulo isomorphisms, i.e. allNP-complete86

problems are relabelings of the same language! This is a conjecture stated by Berman and Hartmanis:87

Definition 3.3 (Berman-Hartmanis Conjecture)

All NP-complete languages are polynomial-time isomorphic to each other.
88

But, Berman-Hartmanis Conjecture implies that P ̸= NP, since if P = NP all NP languages89

would by NP-complete (why?), and90

5

Remark 3.3
Note that the Berman-Hartmanis Conjecture analogue in recursion theory is proven, known as
Myhill’s theorem: we know that allRE-complete problems are essentially (recursive renamings
of) the Halting Problem!

91

3.3 Padding92

3.3.1 Translation Results93

Padding allows us to “transform” a language by padding every string with useless symbols. That is,
we can transform a language L to:

Lp = {x $$$ · · · $︸ ︷︷ ︸
t(|x|) times

| x ∈ L}

where “$” is a symbol not in L’s alphabet. Then, we can transform a TM M deciding L to an M ′94

deciding Lp, just by ignoring the $’s. The running time ofM ′ is measured as a function of the input95

length, which is now |x|+ t(|x|).96

We can use this technique to prove upwards translations of equalities of complexity classes (and97

thus to prove downwards translations for inequalities):98

Theorem 3.6
If NEXP ̸= EXP, then P ̸= NP.

99

Proof. We will prove the contrapositive: If P = NP, then NEXP = EXP. Let L ∈ NTIME[2nc
]

andM a TM deciding it. We define the language:

Lp = {x$2|x|
c

| x ∈ L}

Then, Lp is in NP: First, check if the input has the right format (x$ · · · $, x ∈ Σ∗). Then, simulate100

M(x) for 2|x|c steps and output the answer. Clearly, the running time of this machine is polynomial101

in its input size.102

By our assumption, Lp is also in P. So, can use the machine in P to decide L in EXP: on103

input x, pad it using 2|x|
c
$’s, and use the machine in P to decide Lp. The running time is 2|x|

c , so104

L ∈ EXP.105

In the same way:106

Theorem 3.7
If DSPACE[n] ⊆ P, then P = PSPACE.

107

6

Proof. Fix a k > 0, and let L ∈ DSPACE[nk]. Then, define:

Lp = {x$ℓ | x ∈ L ∧ |x$ℓ| = |x|k}

so Lp ∈ DSPACE[n], thus Lp ∈ P, by our assumption. We conclude that L ∈ P as well, because108

we can pad the input x to x$ℓ, and use the P machine for Lp.109

3.3.2 Separation Results110

We can use padding to separate complexity classes:111

Theorem 3.8
E ̸= PSPACE

112

Proof. Assume, for the sake of contradiction, that E = PSPACE. Let L ∈ DTIME[2n2
]. We

define:
Lp = {x$ℓ | x ∈ L ∧ |x$ℓ| = |x|2}

So, Lp ∈ DTIME[2n], and from our assumption we have that Lp ∈ PSPACE, that is Lp ∈113

DSPACE[nk], for some k ∈ N. We can convert this nk-space-bounded machine to another, de-114

ciding L: Given x, add ℓ = |x|2−|x| $’s, and simulate the nk-space-bounded machine on the padded115

input. We used |x|2k space, so L ∈ PSPACE.116

Thus, we proved that DTIME[2n2
] ⊆ PSPACE. But, E ⊊ DTIME[2n2

], due to the Time117

Hierarchy Theorem, and therefore E ̸= PSPACE.118

▶ Note that we don’t know whether E ⊆ PSPACE or PSPACE ⊆ E!119

3.4 Density of Languages120

Languages are sets of strings, and they often inherit notions from other areas of mathematics. A very121

useful one is density. In the context of complexity theory, where we ’re interested in input lengths122

and polynomial sizes, a dense language contains a superpolynomial number of strings for some string123

lengths. If, on the other hand, every “slice” of strings of length n in the language is bounded by a124

polynomial of n, then the language is called sparse. This leads us to the following definition:125

Definition 3.4 (Sparse Sets)

A language L ⊆ Σ∗ is called sparse if |L ∩ Σn| = poly(n) for every n ∈ N.
126

This means that for every input length n, the number of strings of length n in L is at most poly-127

nomial in n. Notice that this definition could be stated equivalently as |L ∩ Σ≤n| = poly(n), where128

Σ≤n = {x ∈ Σ∗ : |x| ≤ n}. Sparse sets could be considered as sets of low-information content.129

In general,130

7

Definition 3.5
Let L ⊆ Σ∗ be a language. We define its density as the following function from N → N:

densL(n) = |{x ∈ L : |x| ≤ n}|
131

▶ densL(n) is the number of strings in L of length up to n.132

▶ By Definition 3.4, a language L is sparse if there exists a polynomial q such that for every133

n ∈ N : densL(n) ≤ q(n).134

Theorem 3.9
If a language A is paddable, then it is not sparse.

135

Proof. Let A ⊆ Σ∗ with padding function padA : Σ∗ × Σ∗ → Σ∗. Suppose, for the sake of
contradiction, that A is sparse, i.e. ∃ polynomial q ∀n ∈ N : densA(n) ≤ q(n). Since padA ∈ FP,
there exist an r ∈ poly(n):

|padA(x, y)| ≤ r(|x|+ |y|)

(a function computed in polynomial time can print at most a polynomial size output).136

Fix a x ∈ A, since padA is 1-1 :

2n ≤ |{padA(x, y) : |y| ≤ n}| ≤ densA(r(|x|+ n)) ≤ q(r(|x|+ n))

for all n ∈ N, which is a contradiction.137

Theorem 3.10
If the Berman-Hartmanis conjecture is true, then all NP-complete and all coNP-complete
languages are not sparse.

138

Proof. If Berman-Hartmanis conjecture is true, every NP-complete language A is polynomial-time139

isomorphic to SAT. Let f be this isomorphism, and padSAT a padding function for SAT.140

Define:
pA(x, y) := f−1(padSAT(f(x), y))

Then:

x ∈ A ⇔ f(x) ∈ SAT ⇔ padSAT(f(x), y) ∈ SAT ⇔ f−1(padSAT(f(x), y)) ∈ A

By definition, padSAT, f and f−1 are polynomial time computable. So, pA is a padding function141

for A, hence A is paddable, and by the above Theorem 3.9, A is not sparse.142

Also, the complements of paddable languages are paddable (why?), so coNP-complete languages143

are also not sparse.144

145

8

We can relax the assumption of the above theorem to (the weaker) P ̸= NP. This result, known as146

Mahaney’s theorem, states that if P ̸= NP, all NP-complete languages are dense.147

Theorem 3.11 (Mahaney)

For any sparse S ̸= ∅, SAT ≤p
m S if and only if P = NP.

148

Proof. (Ogihara-Watanabe)149

(⇐) This direction is trivial, since ifP = NP, then anyNP-complete language reduces to the sparse150

language {1} (why?).151

(⇒) For this direction, assume that SAT ≤p
m S for a sparse non-empty set S. Define the language

LSAT:
LSAT = {⟨ϕ, σ⟩ |ϕ boolean formula, and ∃τ, τ ⪯ σ : ϕ|τ = T}

That is, LSAT contains tuples of formulas ϕ and partial truth assignments σ, such that there exist152

some truth assignment τ , which precedes lexicographically σ and satisfies the restriction of ϕ to these153

variables. Essentially, it is a “lexicographically bounded” SAT.154

Notice that ⟨ϕ, 1n⟩ ∈ LSAT ⇔ ϕ ∈ SAT, so we can easily reduce SAT to LSAT, thus LSAT is155

NP-complete. Also, if σ1 ⪯ σ2 and ⟨ϕ, σ1⟩ ∈ LSAT, then ⟨ϕ, σ2⟩ ∈ LSAT.156

So, LSAT ≤p
m S, and let f be this reduction. By definition:

⟨ϕ, σ⟩ ∈ LSAT ⇔ f(⟨ϕ, σ⟩) ∈ S

Consider now the self-reducibility tree of ϕ as a partial assignments tree, where at each interme-157

diate node we fix a variable, creating a partial assignment, and at the leaves all the variables are fixed,158

forming full truth assignments.159

Example 3.2.

ϕ(x1, x2, x3)

ϕ|x1=0

ϕ|x1x2=00

ϕ|000 ϕ|001

ϕ|x1x2=01

ϕ|010 ϕ|011

ϕ|x1=1

ϕ|x1x2=10

ϕ|100 ϕ|101

ϕ|x1x2=11

ϕ|110 ϕ|111
Example of self-reducibility tree of ϕ with 3 variables. Notice that the leaves contain all possible
truth assignments, lexicographically ordered. The intermediate nodes contain all the partial truth
assignments, and the root is considered as the empty truth assignment ε.

160

Using this framework, we will exploit f as a subroutine to create an algorithm for SAT (under the161

theorem’s assumption, of course). If this algorithm is in polynomial time, then P = NP.162

9

Observe that since f ∈ FP, |f(x)| ≤ p(|x|), for a polynomial p and every x ∈ Σ∗. In addition,163

f maps strings of LSAT to strings of S, and S is sparse, i.e. it contains at most polynomially many164

strings for every string length, hence the number of strings with length at most p(n) is also polynomial165

in n. Let this polynomial be q(n), where q(n) = |S ∩ Σ≤p(n)|.166

The algorithm will work on the partial assignment tree by pruning some nodes at each level:167

▶ Start from root.168

▶ If the next level has > q(n) nodes, run a pruning procedure until the nodes will be ≤ q(n).169

▶ Output 1 if there is a satisfying truth assignment.170

At the end, there will be n levels with at most q(n) nodes each, so the tree is polynomial.171

Pruning Procedure The pruning will work in two stages:172

▶ At the first stage, we will compute f(⟨ϕ, σi⟩), for all nodes σi at this level. If there are σ1, σ2173

such that f(⟨ϕ, σ1⟩) = f(⟨ϕ, σ2⟩) and σ1 ⪯ σ2, then we throw away σ2.174

▶ If there are> q(n) nodes left, we apply the second stage: remove leftmost node. That is, remove175

the leftmost partial assignment, until there are q(n) nodes left.176

Why is this correct? Wemust assure that the above pruning procedure does not affect the satisfiability177

of ϕ. Here, we can take advantage of LSAT:178

If ϕ satisfiable, at the end of iteration on each level, there is an ancestor of the leftmost179

satisfying truth assignment of ϕ.180

We can prove the above claim using induction on the depth of the tree:181

▶ For the root, it is trivial.182

▶ Suppose of the claim holds for level k − 1, so it contains an ancestor of the leftmost satisfying183

truth assignment for ϕ. Of course, it holds for level k, before the prunning.184

For the duplicates removal (first stage), since f(⟨ϕ, σ2⟩) ∈ S ⇒ f(⟨ϕ, σ1⟩) ∈ S, ϕ has a185

satifying truth assignment smaller than σ1. Hence, the leftmost satifying truth assignment has186

not σ2 as ancestor (or else we would have the contradiction ⟨ϕ, σ1⟩ /∈ LSAT and ⟨ϕ, σ2⟩ ∈187

LSAT!)188

For leftmost nodes removal (second stage), if the level contains more than q nodes, there will189

be at least one σ such that f(⟨ϕ, σ⟩) /∈ S, because S is sparse, and has at most q(n) strings190

(recall that due to first stage, all nodes are distinct). Then, ϕ will not have a satisfying truth191

assignment smaller than σ, so all partial truth assignments to the left of σ can be pruned.192

At the end of the pruning of each level we have at most q(n) nodes, so at the next level there will be193

at most 2q(n) nodes, before the prunning. The application of f to 2q(n) nodes is overall polynomial,194

and at the leaves we will have at most q(n) (full) truth assignments to check, thus the above algorithm195

functions in polynomial time.196

10

3.5 Summary197

▶ Classes like NP, PSPACE or FP can be effectively enumerated.198

▶ If P ̸= NP, there exist problems in NP which are not NP-complete neither in P.199

▶ We can obtain polynomial-time isomorphisms between languages, given they are interreducible200

and paddable.201

▶ Berman-Hartmanis Conjecture postulates that all NP-complete languages are polynomial-time202

isomorphic to each other.203

▶ We can use padding to translate upwards equalities between complexity classes.204

▶ If P ̸= NP, then a sparse set cannot be ≤p
m-hard for NP.205

References206

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge Uni-207

versity Press, 1st edition, April 2009.208

[BC94] Daniel Pierre Bovet and Pierluigi Crescenzi. Introduction to the Theory of Complexity. Prentice Hall209

International (UK) Ltd., Hertfordshire, UK, UK, 1994.210

[Cai03] Jin-Yi Cai. Lectures in Computational Complexity, 2003.211

[DK00] Ding-Zhu Du and Ker-I Ko. Theory of Computational Complexity. Wiley-Interscience, January 2000.212

[For00] L. Fortnow. Diagonalization. 71:102–112, June 2000. Computational Complexity Column.213

[Kat11] Jonathan Katz. Notes on Complexity Theory, 2011.214

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.215

11

	Existence of NP-Intermediate Problems
	Polynomial-Time Isomorphism
	Padding
	Density of Languages
	Summary

