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Quantum Physics

● The Double Slit Experiment



Quantum Physics

● Ultraviolet Catastrophe ● Photoelectric Effect



Quantum Mechanics

Photon can go through both:

: photon having gone through the top slit

: photon having gone through the bottom slit



Classical vs Quantum

Quantum: generalization of classical probability theory

● amplitudes α,β

● |α|2 + |β|2 = 1

● α,β can be negative

● α,β can be complex (eiθ, θ is phase shift)



Classical vs Quantum

Classical

● α + β = 1

●               , S a stochastic matrix

● Classical probabilities are 
positive and will always add

● Operations preserve L1 norm

Quantum

● |α|2 + |β|2 = 1

●                , U a unitary matrix

● Multiple paths to the same final 
answer can cause cancelations

● Operations preserve L2 norm



Operations

● phase shifts

● bit flips

● Hadamard transformation



Operations

● Generally, for some unitary U:

● To preserve normalization, 



Measurements
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Quantum States

● B: a finite set of classical basis states

B={top slit, bottom slit}

B={0,...,n-1}

● A quantum state is a unit vector in C|B|

● Only |B| complex numbers needed (amplitudes)



Quantum States

Syntax

● column vector      with the “ket” symbol

●  row vector       with the “bra” symbol

● inner product with the “bra-ket” notation

For B = {0,...,n-1}

● computational basis
● superposition



Operations

Quantum Operations

Unitary Transformations Measurements

●

● the state remains 
a unit vector

quantum  state

● with probability |α|2 : observe 0 
and state collapses to 

● with probability |β|2 : observe 1 
and state collapses to 



Joint Systems

Consider two qubits

● Β = {0, 1} ⊗ {0, 1} 

● computational basis:

● Joint system:



Entanglement

A system of two qubits |φ⟩ is entangled when it cannot be written as a tensor 
product of qubits |φ0⟩ and |φ1⟩.

e.g 



Partial Measurement

● Joint System: |φ⟩=|φ0⟩ |φ1⟩

with probability |α0|2: observe 0 and state collapses to |0⟩|φ1⟩

with probability |β0|2: observe 1 and state collapses to |1⟩|φ1⟩

● Entangled state: |ψ⟩=ψ00|00⟩ + ψ01|01⟩ + ψ10|10⟩ + ψ11|11⟩ 

with probability ǁψ00ǁ2+ǁψ01ǁ
2: observe 0 and state collapses to

with probability ǁψ10ǁ2+ǁψ11ǁ
2:  observe 1 and state collapses to



Partial Measurement

Example:

Entangled state: 

Measuring first qubit:

● with probability 1/2: observe 0 and state collapses to |0⟩|0⟩

● with probability 1/2: observe 1 and state collapses to |1⟩|1⟩

Measuring second qubit: same result



Phase Changes

● Overall phase changes don’t matter
○ there’s no quantum operation to distinguish |ψ⟩ from a|ψ⟩, |a|2=1

● Partial phase changes matter

example:

● U (y) = U (-x) = - U (x) ● H x = (1,0)T = |0⟩
● H z = (0,1)T = |1⟩



No-cloning

● No quantum procedure transforms |φ⟩→ |φ⟩|φ⟩ for all φ.

● (weakened) There is no unitary transformation such that                                     
U |φ⟩|0⟩= |φ⟩|φ⟩ for all φ.
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Quantum Systems for Classical Problems

Classical problems with quantum systems:

● classical function f: {0,1}n → {0,1}n

● unitary transformation U: U|x⟩ → |f(x)⟩

● need to transform every classical function f into a bijective function



Reversible Computation

Landauer’s Principle: Energy must be expended to lose 
information (and there is a particular conversion from amount of 
information lost to amount of energy that must be expended)

i.e. XOR: (a,b) → (c = a ⊕ b)

information is lost

● cheat: (a,b) → (a, c = a ⊕ b)



Reversible Computation

Toffoli Gate



Reversible Computation

Make  f: {0,1}n → {0,1} with auxiliary input 

● g(x,b) = (x, b ⊕ f(x) )
○ it is its own inverse
○ its bijective

Uf

x

b

x

b ⊕ f(x)



Reversible Computation

● efficient transformation from f to g
● every step reversible

● Suppose f: {0,1}n → {0,1} is implemented by a circuit of s classical NAND gates. 
Then g can be implemented with ∼2s Toffoli gates.



Quantum Circuits

● classical: A finite set of gates S is universal if for any function f: {0,1}n → {0,1}, 
there exists a circuit with gates in S that computes f,  i.e {NAND}, {AND, NOT}

● quantum: A finite set of unitaries S is universal if for every unitary U, there 
exists a circuit made up of unitaries from S that computes U

○ countably many ways to stitch unitaries from S

○ uncountably many unitary transformations

U ≈

G1
G2

Gk
(approximately)



Quantum Universal Gate Sets

●

●

●



Classical vs Quantum Algorithms

Quantum Algorithm Complexity Classical Algorithm 
Complexity

Deutsch-Jozsa constant Θ(2n)

Simon’s Problem O(n) Θ(2n/2)

Grover Search Θ(N1/2) Θ(N)

Shor’s Algorithm O(log3N) subexponential
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Computational Complexity

How hard is it to solve a 
problem

How hard is it to verify a 
problem



Quantum Complexity



● A language L is in Bounded-Error Quantum Polynomial Time (BQP) if there 
exists a universal family of polynomial size quantum circuits Cn such that for 
each x of length n:
○ If x ∈ L ⟹ Pr[Cn accepts x] ≥ ⅔
○ If x∉ L ⟹ Pr[Cn accepts x] ≤ ⅓ 

BQP

Cn

. . .
. . .

|x⟩

|0m⟩

● Problems in BQP:
○ Factoring
○ Discrete Logarithm
○ Simulating Quantum 

Systems



● A language L is in Quantum Merlin-Arthur (QMA) if there exists a family of 
polynomial size quantum verifier circuits Cn such that for each x of length n:
○ If x ∈ L ⟹∃ |ψ⟩ Pr[Cn accepts |x⟩⊗|ψ⟩] ≥ ⅔
○ If x∉ L ⟹ ∀|ψ⟩ Pr[Cn accepts |x⟩⊗|ψ⟩]  ≤ ⅓ 

QMA

. . .
. . .

|x⟩

|0m⟩

● Problems in QMA:
○ Local Hamiltonian 

Problem
witness |ψ⟩ Cn



Local Hamiltonian Problem

(k,α,β)-Local Hamiltonians problem (simplified): Given classical description of 
measurements  {H1, …, Hn} where each Hi acts on k qubits and has a two outcome 
measurement, decide whether there exists a quantum state |ψ⟩ such that:

● ∑iPr[ measuring |ψ⟩ using Hi yields“Reject”] ≤ α (YES case)

● ∑iPr[ measuring |ψ⟩ using Hi yields“Reject”] ≥ β (NO case)



QIP

● A language L is in Quantum Interactive Proofs (QIP) if there exists a family of 
polynomial size quantum verifier circuits V|x| computable in poly(|x|) time such 
that for each x of length n:
○ If x ∈ L ⟹∃ P Pr[P persuades V|x| to accept] ≥ ⅔
○ If x∉ L ⟹ ∀ P Pr[P persuades V|x| to accept]  ≤ ⅓ 

QIP(m)m=6:



QIP



MIP*

Multi-Prover Interactive Proofs with Quantum Provers (MIP*) is the same as QIP, 
except that now the verifier can exchange messages with many provers, not just 
one. The provers cannot communicate with each other during the execution of the 
protocol, so the verifier can "cross-check" their assertions.

https://complexityzoo.net/Complexity_Zoo:I#ip


MIP* = RE

● Εntangled states → verifier doesn’t have to compute the question

● Different models for entanglement

○ tensor product model

○ commuting operator model of entanglement

● Calculate maximum winning percentage of nonlocal games

○ compute floor with algorithm using tensor product model

○ compute floor with algorithm using commuting operator model of entanglement

● Nonlocal game of halting problem 

[Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, Henry Yuen]




