Intro to Quantum Computations and Quantum Complexity

Orestis Chardouvelis

Contents

• Quantum Physics Intuition

• A Mathematical Model for Quantum Mechanics

• Quantum Complexity

Contents

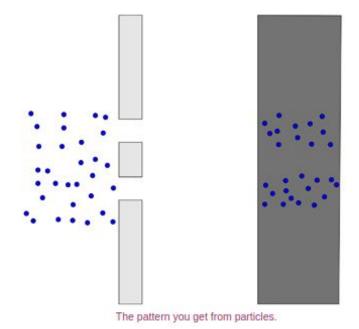
• Quantum Physics Intuition

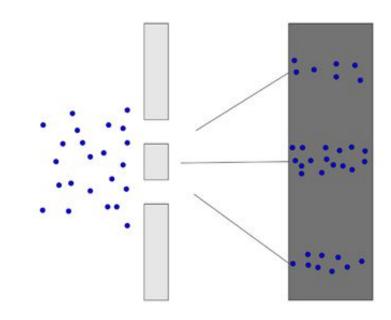
• A Mathematical Model for Quantum Mechanics

• Quantum Complexity

Quantum Physics

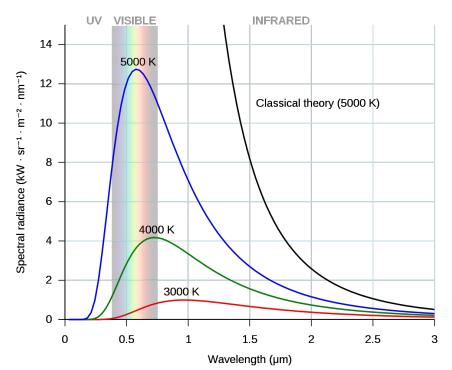
• The Double Slit Experiment



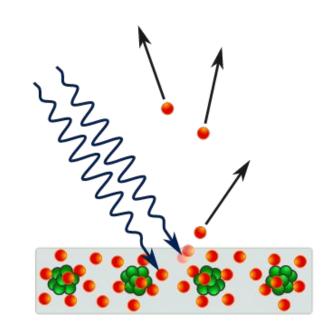


Quantum Physics

• Ultraviolet Catastrophe



• Photoelectric Effect



Quantum Mechanics

|0
angle : photon having gone through the top slit

|1
angle : photon having gone through the bottom slit

Photon can go through both:

 $\alpha \left| 0 \right\rangle + \beta \left| 1 \right\rangle$

Classical vs Quantum

Quantum: generalization of classical probability theory

- amplitudes α,β
- $|\alpha|^2 + |\beta|^2 = 1$
- α,β can be negative
- α,β can be complex ($e^{i\theta}$, θ is phase shift)

Classical vs Quantum

Classical

• $\alpha + \beta = 1$

•
$$S \cdot \begin{pmatrix} a \\ b \end{pmatrix}$$
 . S a stochastic matrix

- Classical probabilities are positive and will always add
- Operations preserve L₁ norm

Quantum

• $|\alpha|^2 + |\beta|^2 = 1$

• $U \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$, U a unitary matrix

- Multiple paths to the same final answer can cause cancelations
- Operations preserve L₂ norm

Operations

- phase shifts
- bit flips
- Hadamard transformation

$$\begin{split} |0\rangle &\rightarrow \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \\ |1\rangle &\rightarrow \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle. \end{split}$$

Operations

• Generally, for some unitary U:

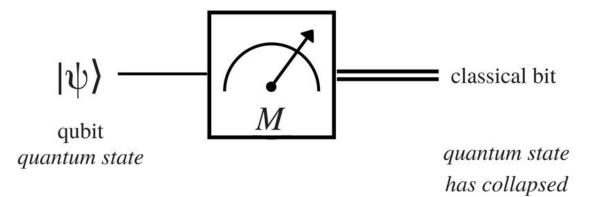
 $\begin{aligned} |0\rangle &\to U_{00}|0\rangle + U_{01}|1\rangle \\ |1\rangle &\to U_{10}|0\rangle + U_{11}|1\rangle \end{aligned}$

• To preserve normalization, $U^{\dagger}U=I$

$$U = \begin{pmatrix} U_{00} & U_{10} \\ U_{10} & U_{11} \end{pmatrix}$$

$$U^{\dagger} = \begin{pmatrix} U_{00}^* & U_{01}^* \\ U_{10}^* & U_{11}^* \end{pmatrix}$$

Measurements



Contents

• Quantum Physics Intuition

• A Mathematical Model for Quantum Mechanics

• Quantum complexity

Quantum States

• B: a finite set of classical basis states

B={top slit, bottom slit}

 $B=\{0,...,n-1\}$

- A quantum state is a unit vector in $C^{|B|}$
- Only IBI complex numbers needed (amplitudes)

Quantum States

Syntax

- column vector ϕ with the "ket" symbol $|\phi
 angle$
- row vector ϕ^\dagger with the "bra" symbol $\langle \phi |$
- inner product with the "bra-ket" notation $\phi \cdot \psi = \langle \phi | \psi \rangle$

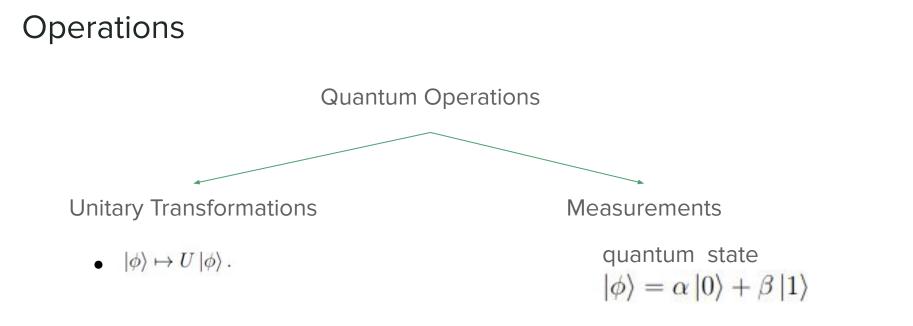
For $B = \{0, ..., n-1\}$

• computational basis

$$|0\rangle = \begin{pmatrix} 1\\0\\0\\\vdots\\0 \end{pmatrix}, \quad |1\rangle = \begin{pmatrix} 0\\1\\0\\\vdots\\0 \end{pmatrix}, \quad \dots, \quad |n-1\rangle = \begin{pmatrix} 0\\0\\0\\\vdots\\1 \end{pmatrix}.$$

• superposition

$$\left|\phi\right\rangle = \phi_{0}\left|0\right\rangle + \phi_{1}\left|1\right\rangle + \dots + \phi_{n-1}\left|n-1\right\rangle.$$



 the state remains a unit vector

- with probability $|\alpha|^2$: observe 0 and state collapses to $|0\rangle$
- with probability $|\beta|^2$: observe 1 and state collapses to $|1\rangle$

Joint Systems

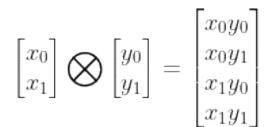
Consider two qubits

 $\begin{aligned} |\phi_0\rangle &= \alpha_0 |0\rangle + \beta_0 |1\rangle \\ |\phi_1\rangle &= \alpha_1 |0\rangle + \beta_1 |1\rangle \end{aligned}$

- $B = \{0, 1\} \otimes \{0, 1\}$
- computational basis: $|0\rangle \otimes |0\rangle$, $|0\rangle \otimes |1\rangle$, $|1\rangle \otimes |0\rangle$, $|1\rangle \otimes |1\rangle$

• Joint system:

 $\begin{aligned} \left|\phi_{0}\right\rangle\left|\phi_{1}\right\rangle &= (\alpha_{0}\left|0\right\rangle + \beta_{0}\left|1\right\rangle)(\alpha_{1}\left|0\right\rangle + \beta_{1}\left|1\right\rangle) \\ &= \alpha_{0}\alpha_{1}\left|00\right\rangle + \alpha_{0}\beta_{1}\left|01\right\rangle + \beta_{0}\alpha_{1}\left|10\right\rangle + \beta_{0}\beta_{1}\left|11\right\rangle \end{aligned}$



Entanglement

A system of two qubits $|\phi\rangle$ is entangled when it cannot be written as a tensor product of qubits $|\phi_0\rangle$ and $|\phi_1\rangle$.

e.g
$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Partial Measurement

• Joint System: $|\phi\rangle = |\phi_0\rangle |\phi_1\rangle$

with probability $|\alpha_0|^2$: observe 0 and state collapses to $|0\rangle|\phi_1\rangle$ with probability $|\beta_0|^2$: observe 1 and state collapses to $|1\rangle|\phi_1\rangle$

• Entangled state: $|\psi\rangle = \psi_{00}|00\rangle + \psi_{01}|01\rangle + \psi_{10}|10\rangle + \psi_{11}|11\rangle$

with probability $\|\psi_{00}\|^2 + \|\psi_{01}\|^2$: observe 0 and state collapses to

with probability $\|\psi_{10}\|^2 + \|\psi_{11}\|^2$: observe 1 and state collapses to

 $\frac{\sqrt{\|\psi_{00}\|^2 + \|\psi_{01}\|^2}}{\frac{\psi_{10} \|10}{\sqrt{\|\psi_{10}\|^2 + \|\psi_{11}\|^2}}}$

 $\psi_{00} |00\rangle + \psi_{01} |01\rangle$

Partial Measurement

Example:

Entangled state: $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

Measuring first qubit:

- with probability 1/2: observe 0 and state collapses to $|0\rangle|0\rangle$
- with probability 1/2: observe 1 and state collapses to $|1\rangle|1\rangle$

Measuring second qubit: same result

Phase Changes

- Overall phase changes don't matter
 - \circ there's no quantum operation to distinguish $|\psi\rangle$ from $a|\psi\rangle,\,|a|^2=1$
- Partial phase changes matter

example:

$$x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \quad y = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\-1 \end{pmatrix} \quad z = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}$$

•
$$U(y) = U(-x) = -U(x)$$

•
$$H \times = (1,0)^T = |0\rangle$$

• $H z = (0,1)^T = |1\rangle$

No-cloning

- No quantum procedure transforms $|\phi\rangle \rightarrow |\phi\rangle |\phi\rangle$ for all ϕ .
- (weakened) There is no unitary transformation such that $U |\phi\rangle|0\rangle = |\phi\rangle|\phi\rangle$ for all ϕ .

Proof. Suppose we have such a U. Then using $U^{\dagger}U = I$ we have for any ψ, ϕ

$$\begin{aligned} \langle \psi | \phi \rangle &= \langle 0 | 0 \rangle \langle \psi | \phi \rangle \\ &= \langle \psi | \langle 0 | \phi \rangle | 0 \rangle \\ &= \langle \psi | \langle 0 | U^{\dagger} U \phi \rangle | 0 \rangle \\ &= \langle \psi | \langle \psi | \phi \rangle | \phi \rangle \\ &= |\langle \psi | \phi \rangle|^{2}. \end{aligned}$$

Thus taking ψ, ϕ neither orthogonal nor equal we reach a contradiction.

No-cloning

- (weakened) There is no unitary transformation such that $U |\phi\rangle|0\rangle = |\phi\rangle|\phi\rangle$ for all ϕ . Proof. Suppose we have such $\psi|\phi\rangle$ then using $U^{\dagger}U = I$ we have for any ψ, ϕ $\langle \psi | \phi \rangle = \langle 0 | 0 \rangle \langle \psi | \phi \rangle$

$$\begin{aligned} \langle \psi | \phi \rangle &= \langle 0 | 0 \rangle \langle \psi | \phi \rangle \\ &= \langle \psi | \langle 0 | \phi \rangle | 0 \rangle \\ &= \langle \psi | \langle 0 | U^{\dagger} U \phi \rangle | 0 \rangle \\ &= \langle \psi | \langle 0 | U^{\dagger} U \phi \rangle | 0 \rangle \end{aligned}$$

$$= \langle \psi | \langle \psi | \phi \rangle | \phi \rangle$$

$$= |\langle \psi | \phi \rangle|^2.$$

Thus taking ψ, ϕ neither orthogonal nor equal we reach a contradiction.

Quantum Systems for Classical Problems

Classical problems with quantum systems:

- classical function f: $\{0,1\}^n \rightarrow \{0,1\}^n$
- unitary transformation U: $U|x\rangle \rightarrow |f(x)\rangle$
- need to transform every classical function f into a bijective function

i.e. XOR: (a,b) \rightarrow (c = a \oplus b)

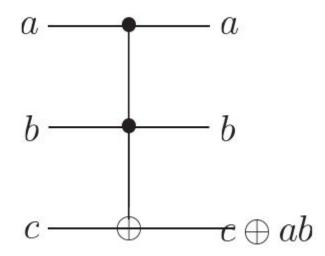
information is lost

Landauer's Principle: Energy must be expended to lose information (and there is a particular conversion from amount of information lost to amount of energy that must be expended)

• cheat: $(a,b) \Rightarrow (a, c = a \oplus b)$

Toffoli Gate

Inputs			Outputs		
a	b	c	a'	b'	c'
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	1
1	1	1	1	1	0



Make f: $\{0,1\}^n \rightarrow \{0,1\}$ with auxiliary input

- $g(x,b) = (x, b \oplus f(x))$
 - \circ it is its own inverse
 - its bijective

- efficient transformation from f to g
- every step reversible

Suppose f: {0,1}ⁿ → {0,1} is implemented by a circuit of s classical NAND gates.
 Then g can be implemented with ~2s Toffoli gates.

$$(x, 1^s, b) \to \boxed{h(x, 1^s), b} \to (x, w_1(x), \dots, w_s(x), b) \to$$
$$\boxed{h'(x, w_1(x), \dots, w_s(x)), b \oplus w_s(x)} \to (x, 1^s, b \oplus f(x))$$

Quantum Circuits

- classical: A finite set of gates S is universal if for any function f: $\{0,1\}^n \rightarrow \{0,1\}$, there exists a circuit with gates in S that computes f, i.e {NAND}, {AND, NOT}
- quantum: A finite set of unitaries S is universal if for every unitary U, there exists a circuit made up of unitaries from S that computes U
 - \circ ~ countably many ways to stitch unitaries from S
 - uncountably many unitary transformations

Quantum Universal Gate Sets

• {Toffoli, H, $\begin{pmatrix} 1 \\ e^{i\pi/4} \end{pmatrix}$ } • $\{CNOT, H, \begin{pmatrix} 1 \\ e^{i\pi/4} \end{pmatrix}\}$

 $CNOT: (a, b) \rightarrow (a, a \oplus b)$ $P = \begin{pmatrix} 1 \\ i \end{pmatrix}$ Clifford gates: generated by

 $\{P, H, CNOT\}$

• {Toffoli, CNOT, H, P}

Classical vs Quantum Algorithms

Quantum Algorithm	Complexity	Classical Algorithm Complexity	
Deutsch-Jozsa	constant	Θ(2 ⁿ)	
Simon's Problem	O(n)	Θ(2 ^{n/2})	
Grover Search	Θ(N ^{1/2})	Θ(N)	
Shor's Algorithm	O(log ³ N)	subexponential	

Contents

• Quantum Physics Intuition

• A Mathematical Model for Quantum Mechanics

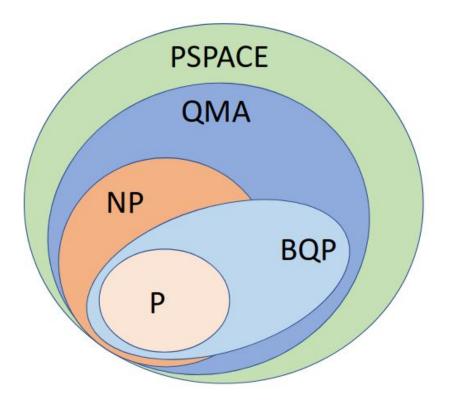
Quantum Complexity

Computational Complexity

How hard is it to solve a problem

How hard is it to verify a problem

Quantum Complexity



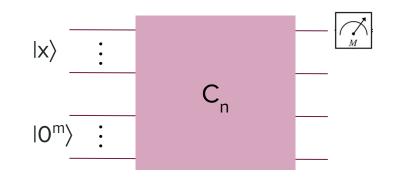
BQP

• A language L is in Bounded-Error Quantum Polynomial Time (BQP) if there exists a universal family of polynomial size quantum circuits C_n such that for each x of length n:

• If
$$x \in L \Longrightarrow Pr[C_n \text{ accepts } x] \ge \frac{2}{3}$$

• If
$$x \notin L \Longrightarrow Pr[C_n \text{ accepts } x] \le \frac{1}{3}$$

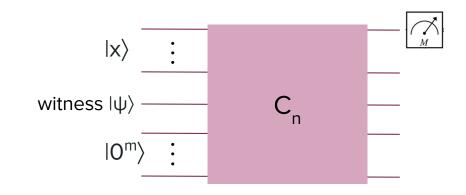
- Problems in BQP:
 - Factoring
 - Discrete Logarithm
 - Simulating Quantum Systems



QMA

- A language L is in Quantum Merlin-Arthur (QMA) if there exists a family of polynomial size quantum verifier circuits C_n such that for each x of length n:
 - If x ∈ L ⇒ ∃ $|\psi\rangle$ Pr[C_n accepts $|x\rangle \otimes |\psi\rangle$] ≥ $\frac{2}{3}$
 - $\circ \quad \text{If } x \notin L \Longrightarrow \forall |\psi\rangle \operatorname{Pr}[C_n \text{ accepts } |x\rangle \otimes |\psi\rangle] \leq {}^{1\!\!/_3}$

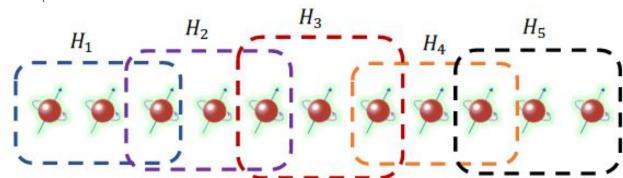
- Problems in QMA:
 - Local Hamiltonian
 Problem



Local Hamiltonian Problem

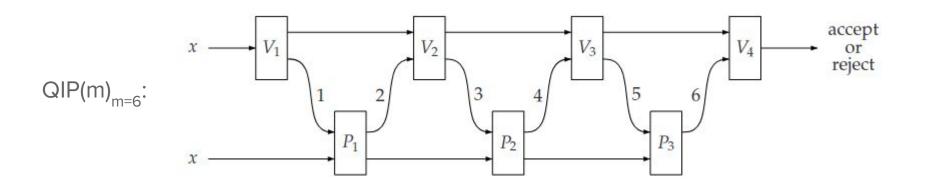
(k,a, β)-Local Hamiltonians problem (simplified): Given classical description of measurements {H₁, ..., H_n} where each H_i acts on k qubits and has a two outcome measurement, decide whether there exists a quantum state $|\psi\rangle$ such that:

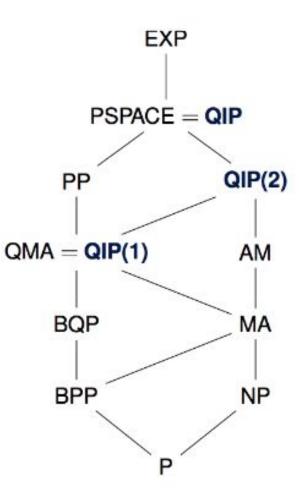
- $\sum_{i} \Pr[\text{ measuring } |\psi\rangle \text{ using } H_i \text{ yields "Reject"}] \le \alpha \text{ (YES case)}$
- $\sum_{i} \Pr[\text{ measuring } |\psi\rangle \text{ using } H_i \text{ yields"} \operatorname{Reject"}] \ge \beta \text{ (NO case)}$



QIP

- A language L is in Quantum Interactive Proofs (QIP) if there exists a family of polynomial size quantum verifier circuits $V_{|x|}$ computable in poly(|x|) time such that for each x of length n:
 - If $x \in L \Rightarrow \exists P Pr[P \text{ persuades } V_{|x|} \text{ to accept}] ≥ \frac{2}{3}$
 - If $x \notin L \Rightarrow \forall P Pr[P \text{ persuades } V_{|_{x|}} \text{ to accept}] ≤ \frac{1}{3}$





Multi-Prover Interactive Proofs with Quantum Provers (MIP*) is the same as QIP, except that now the verifier can exchange messages with *many provers*, not just one. The provers cannot communicate with each other during the execution of the protocol, so the verifier can "cross-check" their assertions.

$MIP^* = RE$

[Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, Henry Yuen]

- Entangled states → verifier doesn't have to compute the question
- Different models for entanglement
 - tensor product model
 - commuting operator model of entanglement
- Calculate maximum winning percentage of nonlocal games
 - compute floor with algorithm using tensor product model
 - compute floor with algorithm using commuting operator model of entanglement
- Nonlocal game of halting problem

