Intro to Quantum Computations and Quantum Complexity

Orestis Chardouvelis

Contents

- Quantum Physics Intuition
- A Mathematical Model for Quantum Mechanics
- Quantum Complexity

Contents

- Quantum Physics Intuition
- A Mathematical Model for Quantum Mechanics
- Quantum Complexity

Quantum Physics

- The Double Slit Experiment

Quantum Physics

- Ultraviolet Catastrophe

- Photoelectric Effect

Quantum Mechanics

$|0\rangle$: photon having gone through the top slit
$|1\rangle$: photon having gone through the bottom slit

Photon can go through both:

$$
\alpha|0\rangle+\beta|1\rangle
$$

Classical vs Quantum

Quantum: generalization of classical probability theory

- amplitudes α, β
- $|a|^{2}+|\beta|^{2}=1$
- a, β can be negative
- $\quad a, \beta$ can be complex ($e^{i \theta}, \theta$ is phase shift)

Classical vs Quantum

Classical

- $\alpha+\beta=1$
- $S \cdot\binom{a}{b}$, S a stochastic matrix
- Classical probabilities are positive and will always add
- Operations preserve L_{1} norm

Quantum

- $|a|^{2}+|\beta|^{2}=1$
- $U \cdot\binom{\alpha}{\beta}, \mathrm{U}$ a unitary matrix
- Multiple paths to the same final answer can cause cancelations
- Operations preserve L_{2} norm

Operations

- phase shifts
- bit flips
- Hadamard transformation

$$
\begin{aligned}
& |0\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
& |1\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle .
\end{aligned}
$$

Operations

- Generally, for some unitary U:

$$
\begin{aligned}
& |0\rangle \rightarrow U_{00}|0\rangle+U_{01}|1\rangle \\
& |1\rangle \rightarrow U_{10}|0\rangle+U_{11}|1\rangle
\end{aligned}
$$

$$
U=\left(\begin{array}{ll}
U_{00} & U_{10} \\
U_{10} & U_{11}
\end{array}\right)
$$

- To preserve normalization,

$$
U^{\dagger} U=I
$$

$$
U^{\dagger}=\left(\begin{array}{cc}
U_{00}^{*} & U_{01}^{*} \\
U_{10}^{*} & U_{11}^{*}
\end{array}\right)
$$

Measurements

Contents

- Quantum Physics Intuition
- A Mathematical Model for Quantum Mechanics
- Quantum complexity

Quantum States

- B: a finite set of classical basis states
$B=\{$ top slit, bottom slit\}
$B=\{0, \ldots, n-1\}$
- A quantum state is a unit vector in $\mathrm{C}^{\mid \mathrm{BI}}$
- Only IBI complex numbers needed (amplitudes)

Quantum States

Syntax

- column vector ϕ with the "ket" symbol $|\phi\rangle$
- row vector ϕ^{\dagger} with the "bra" symbol $\langle\phi|$
- inner product with the "bra-ket" notation $\phi \cdot \psi=\langle\phi \mid \psi\rangle$

For $B=\{0, \ldots, n-1\}$

- computational basis

$$
|0\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right), \quad|1\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
\vdots
\end{array}\right), \quad \ldots, \quad|n-1\rangle=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right) .
$$

- superposition

$$
|\phi\rangle=\phi_{0}|0\rangle+\phi_{1}|1\rangle+\cdots+\phi_{n-1}|n-1\rangle .
$$

Operations

Quantum Operations

Unitary Transformations

- $|\phi\rangle \mapsto U|\phi\rangle$.
- the state remains a unit vector
quantum state

$$
|\phi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

- with probability $|a|^{2}$: observe 0 and state collapses to $|0\rangle$
- with probability $|\beta|^{2}$: observe 1 and state collapses to |1>

Joint Systems

Consider two qubits

$$
\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right] \bigotimes\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]=\left[\begin{array}{l}
x_{0} y_{0} \\
x_{0} y_{1} \\
x_{1} y_{0} \\
x_{1} y_{1}
\end{array}\right]
$$

$$
\begin{aligned}
\left|\phi_{0}\right\rangle & =\alpha_{0}|0\rangle+\beta_{0}|1\rangle \\
\left|\phi_{1}\right\rangle & =\alpha_{1}|0\rangle+\beta_{1}|1\rangle
\end{aligned}
$$

- $B=\{0,1\} \otimes\{0,1\}$
- computational basis: $|0\rangle \otimes|0\rangle, \quad|0\rangle \otimes|1\rangle, \quad|1\rangle \otimes|0\rangle, \quad|1\rangle \otimes|1\rangle$
- Joint system:

$$
\begin{aligned}
\left|\phi_{0}\right\rangle\left|\phi_{1}\right\rangle & =\left(\alpha_{0}|0\rangle+\beta_{0}|1\rangle\right)\left(\alpha_{1}|0\rangle+\beta_{1}|1\rangle\right) \\
& =\alpha_{0} \alpha_{1}|00\rangle+\alpha_{0} \beta_{1}|01\rangle+\beta_{0} \alpha_{1}|10\rangle+\beta_{0} \beta_{1}|11\rangle
\end{aligned}
$$

Entanglement

A system of two qubits $|\varphi\rangle$ is entangled when it cannot be written as a tensor product of qubits $\left|\varphi_{0}\right\rangle$ and $\left|\varphi_{1}\right\rangle$.
e.g $\quad|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

Partial Measurement

- Joint System: $|\varphi\rangle=\left|\varphi_{0}\right\rangle\left|\varphi_{1}\right\rangle$
with probability $\left|a_{0}\right|^{2}$: observe 0 and state collapses to $|0\rangle\left|\varphi_{1}\right\rangle$
with probability $\left|\beta_{0}\right|^{2}$: observe 1 and state collapses to $|1\rangle\left|\varphi_{1}\right\rangle$
- Entangled state: $|\psi\rangle=\Psi_{00}|00\rangle+\psi_{01}|01\rangle+\psi_{10}|10\rangle+\psi_{11}|11\rangle$
with probability $\left\|\psi_{00}\right\|^{2}+\left\|\psi_{01}\right\|^{2}$: observe 0 and state collapses to $\frac{\psi_{00}|00\rangle+\psi_{01}|01\rangle}{\sqrt{\left\|\psi_{00}\right\|^{2}+\left\|\psi_{01}\right\|^{2}}}$ with probability $\left\|\Psi_{10}\right\|^{2}+\left\|\psi_{11}\right\|^{2}$: observe 1 and state collapses to $\frac{\psi_{10}|10\rangle+\psi_{11}|11\rangle}{\sqrt{\left\|\psi_{10}\right\|^{2}+\left\|\psi_{11}\right\|^{2}}}$

Partial Measurement

Example:
Entangled state: $|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
Measuring first qubit:

- with probability $1 / 2$: observe 0 and state collapses to $|0\rangle|0\rangle$
- with probability $1 / 2$: observe 1 and state collapses to $|1\rangle|1\rangle$

Measuring second qubit: same result

Phase Changes

- Overall phase changes don't matter
- there's no quantum operation to distinguish $|\psi\rangle$ from $a|\psi\rangle$, $|a|^{2}=1$
- Partial phase changes matter
example:
$x=\frac{1}{\sqrt{2}}\binom{1}{1} y=\frac{1}{\sqrt{2}}\binom{-1}{-1} z=\frac{1}{\sqrt{2}}\binom{1}{-1}$
- $\mathrm{U}(\mathrm{y})=\mathrm{U}(-\mathrm{x})=-\mathrm{U}(\mathrm{x})$
- H x $=(1,0)^{\top}=|0\rangle$
- $H z=(0,1)^{\top}=|1\rangle$

No-cloning

- No quantum procedure transforms $|\varphi\rangle \rightarrow|\varphi\rangle|\varphi\rangle$ for all φ.
- (weakened) There is no unitary transformation such that $U|\varphi\rangle|0\rangle=|\varphi\rangle|\varphi\rangle$ for all φ.
Proof. Suppose we have such a U. Then using $U^{\dagger} U=I$ we have for any ψ, ϕ

$$
\begin{aligned}
\langle\psi \mid \phi\rangle & =\langle 0 \mid 0\rangle\langle\psi \mid \phi\rangle \\
& =\langle\psi|\langle 0 \mid \phi\rangle|0\rangle \\
& =\langle\psi|\left\langle 0 \mid U^{\dagger} U \phi\right\rangle|0\rangle \\
& =\langle\psi|\langle\psi \mid \phi\rangle|\phi\rangle \\
& =|\langle\psi \mid \phi\rangle|^{2}
\end{aligned}
$$

Thus taking ψ, ϕ neither orthogonal nor equal we reach a contradiction.

No-cloning

- No quantum procedure transforms $|\varphi\rangle \rightarrow|\varphi\rangle|\varphi\rangle$ for all φ.
- (weakened) There is no unitary transformationstinat $U|\varphi\rangle|0\rangle=|\varphi\rangle|\varphi\rangle$ for all φ.
Proof. Suppose we have such Then using $U^{\dagger} U=I$ we have for any ψ, ϕ
Linilatioll

$$
\begin{aligned}
\langle\psi \mid \phi\rangle & =\langle 0 \mid 0\rangle\langle\psi \mid \phi\rangle \\
& =\langle\psi|\langle 0 \mid \phi\rangle|0\rangle \\
& =\langle\psi|\left\langle 0 \mid U^{\dagger} U \phi\right\rangle|0\rangle \\
& =\langle\psi|\langle\psi \mid \phi\rangle|\phi\rangle \\
& =|\langle\psi \mid \phi\rangle|^{2} .
\end{aligned}
$$

Thus taking ψ, ϕ neither orthogonal nor equal we reach a contradiction.

Quantum Systems for Classical Problems

Classical problems with quantum systems:

- classical function f: $\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- unitary transformation $U: U|x\rangle \Rightarrow|f(x)\rangle$
- need to transform every classical function finto a bijective function

Reversible Computation

i.e. $X O R:(a, b) \rightarrow(c=a \oplus b)$
information is lost

Landauer's Principle: Energy must be expended to lose information (and there is a particular conversion from amount of information lost to amount of energy that must be expended)

- cheat: $(a, b) \rightarrow(a, c=a \oplus b)$

Reversible Computation

Toffoli Gate

Inputs				Outputs		
a	b	c	a^{\prime}	b^{\prime}	c^{\prime}	
0	0	0	0	0	0	
0	0	1	0	0	1	
0	1	0	0	1	0	
0	1	1	0	1	1	
1	0	0	1	0	0	
1	0	1	1	0	1	
1	1	0	1	1	1	
1	1	1	1	1	0	

Reversible Computation

Make f: $\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ with auxiliary input

- $g(x, b)=(x, b \oplus f(x))$
- it is its own inverse
- its bijective

Reversible Computation

- efficient transformation from f to g
- every step reversible
- Suppose f: $\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ is implemented by a circuit of s classical NAND gates. Then g can be implemented with $\sim 2 s$ Toffoli gates.

$$
\begin{aligned}
& \left(x, 1^{s}, b\right) \rightarrow h\left(x, 1^{s}\right), b \rightarrow\left(x, w_{1}(x), \ldots, w_{s}(x), b\right) \rightarrow \\
& h^{\prime}\left(x, w_{1}(x), \ldots, w_{s}(x)\right), b \oplus w_{s}(x) \rightarrow\left(x, 1^{s}, b \oplus f(x)\right)
\end{aligned}
$$

Quantum Circuits

- classical: A finite set of gates S is universal if for any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, there exists a circuit with gates in S that computes f, i.e \{NAND\}, \{AND, NOT\}
- quantum: A finite set of unitaries S is universal if for every unitary U, there exists a circuit made up of unitaries from S that computes U
- countably many ways to stitch unitaries from S
- uncountably many unitary transformations

Quantum Universal Gate Sets

- $\left\{\right.$ Toffoli, $\left.H,\left(\begin{array}{ll}1 & \\ & e^{i \pi / 4}\end{array}\right)\right\}$

$$
\text { CNOT }:(a, b) \rightarrow(a, a \oplus b)
$$

- $\left\{\right.$ CNOT, $\left.H,\left(\begin{array}{ll}1 & \\ & e^{i \pi / 4}\end{array}\right)\right\}$

$$
P=\left(\begin{array}{ll}
1 & \\
& i
\end{array}\right)
$$

Clifford gates: generated by $\{P, H, C N O T\}$

- \{Toffoli, CNOT, $H, P\}$

Classical vs Quantum Algorithms

Quantum Algorithm	Complexity	Classical Algorithm Complexity
Deutsch-Jozsa	constant	$\Theta\left(2^{n}\right)$
Simon's Problem	$\mathrm{O}(\mathrm{n})$	$\Theta\left(2^{n / 2}\right)$
Grover Search	$\Theta\left(\mathrm{N}^{1 / 2}\right)$	$\Theta(\mathrm{N})$
Shor's Algorithm	$\mathrm{O}\left(\log ^{3} \mathrm{~N}\right)$	subexponential

Contents

- Quantum Physics Intuition
- A Mathematical Model for Quantum Mechanics
- Quantum Complexity

Computational Complexity

Quantum Complexity

BQP

- A language L is in Bounded-Error Quantum Polynomial Time (BQP) if there exists a universal family of polynomial size quantum circuits C_{n} such that for each x of length n :
- If $x \in L \Rightarrow \operatorname{Pr}\left[C_{n}\right.$ accepts $\left.x\right] \geq 2 / 3$
- If $x \notin L \Rightarrow \operatorname{Pr}\left[C_{n}\right.$ accepts $\left.x\right] \leq 1 / 3$
- Problems in BQP:
- Factoring
- Discrete Logarithm
- Simulating Quantum

Systems

QMA

- A language L is in Quantum Merlin-Arthur (QMA) if there exists a family of polynomial size quantum verifier circuits C_{n} such that for each x of length n :
- If $x \in L \Rightarrow \exists|\psi\rangle \operatorname{Pr}\left[C_{n}\right.$ accepts $\left.|x\rangle \otimes|\psi\rangle\right] \geq 2 / 3$
- If $x \notin L \Rightarrow \forall|\psi\rangle \operatorname{Pr}\left[C_{n}\right.$ accepts $\left.|x\rangle \otimes|\psi\rangle\right] \leq 1 / 3$
- Problems in QMA:
- Local Hamiltonian

Problem

Local Hamiltonian Problem

($\mathbf{k}, \mathbf{a}, \beta$)-Local Hamiltonians problem (simplified): Given classical description of measurements $\left\{H_{1}, \ldots, H_{n}\right\}$ where each H_{i} acts on k qubits and has a two outcome measurement, decide whether there exists a quantum state $|\psi\rangle$ such that:

- $\quad \sum_{i} \operatorname{Pr}\left[\right.$ measuring $|\psi\rangle$ using H_{i} yields"Reject"] $\leq a(Y E S ~ c a s e) ~$
- $\quad \sum_{i} \operatorname{Pr}\left[\right.$ measuring $|\psi\rangle$ using H_{i} yields"Reject" $] \geq \beta$ (NO case)

QIP

- A language L is in Quantum Interactive Proofs (QIP) if there exists a family of polynomial size quantum verifier circuits $\mathrm{V}_{|x|}$ computable in poly(|x|) time such that for each x of length n :
- If $x \in L \Rightarrow \exists \operatorname{Pr} \operatorname{Pr}\left[P\right.$ persuades $V_{|x|}$ to accept $] \geq 2 / 3$
- If $\mathrm{x} \ddagger \mathrm{L} \Rightarrow \forall P \operatorname{Pr}\left[\mathrm{P}\right.$ persuades $\mathrm{V}_{|x|}$ to accept $] \leq 1 / 3$
$\operatorname{QIP}(m)_{m=6}:$

QIP

MIP*

Multi-Prover Interactive Proofs with Quantum Provers (MIP*) is the same as QIP, except that now the verifier can exchange messages with many provers, not just one. The provers cannot communicate with each other during the execution of the protocol, so the verifier can "cross-check" their assertions.

$\mathrm{MIP}^{*}=\mathrm{RE}$

[Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, Henry Yuen]

- Entangled states \rightarrow verifier doesn't have to compute the question
- Different models for entanglement
- tensor product model
- commuting operator model of entanglement
- Calculate maximum winning percentage of nonlocal games
- compute floor with algorithm using tensor product model
- compute floor with algorithm using commuting operator model of entanglement
- Nonlocal game of halting problem

