
Helios: Attacks and Formal Models for
Verifiability

Panagiotis Grontas
30/03/2023

NTUA - Advanced topics in cryptography (2022-2023)

Helios: Attacks and Formal Models for Verifiability 1 / 56

Introduction

• Electronic voting with cryptography is quite old
• First reference: Chaum (1981)
• First E-voting PhD: Benaloh (1986)
• Recall: DH Key Exchange (1976)
• Recall: RSA (1978)

• Why can’t we vote electronically (online) after 40 years?
• Note: Efficiency reasons have been solved

Helios: Attacks and Formal Models for Verifiability 2 / 56

Because of a set of conflicting properties
Verifiability The most important
advantage over traditional
elections
• Individual
• Universal
• Eligibility
• E2E Verifiability

Privacy
• Ballot secrecy
• Receipt freeness
• Coercion resistance
• Everlasting privacy
• Participation privacy

Other properties:

• Accountability
• Efficiency
• Fairness
• Robustness
• Usability

Helios: Attacks and Formal Models for Verifiability 3 / 56

The Helios Voting System

History i

• Electronic elections [A08] in the browser
• E2E Verifiable: All can check that every vote is included in the tally
unaltered

• Open-Audit: Public and independent access to all election data

• Many elections: IACR, ACM, Universities etc.
• 2.000.000 votes cast so far - heliosvoting.org

• Based on well known cryptographic protocols
• Sako-Killian Mixnet (Eurocrypt ’95) - Helios 1.0
• CGS homomorphic tallying (Eurocrypt ’97) - Helios 2.0
• Added Cast-As-Intended Verifiability (Benaloh challenge)

• Many variations: Zeus, Helios-C (Belenios)

Helios: Attacks and Formal Models for Verifiability The Helios Voting System 4/ 56

heliosvoting.org

History ii

Characteristics
• Use of Non-Interactive Σ

protocols for verifiability
• Force the EA and corrupted
voters to follow the protocol

• Distributed Decryption
• Votes are encrypted on the
client

• No decryption key leaves
each trustee’s computer

• The Helios Server sees only
the result

• Trust no one for integrity,
trust the trustee’s for privacy

Disadvantages
• Untrusted clients: A
corrupted computer can
ultimately display whatever it
wants, despite auditing

• Few guarantees against
coercion in the unsupervised
setting (Countermeasure: Last
vote counts)

• Assumption: The voter has
access to a trusted computer
at some point before the
election ends

Helios: Attacks and Formal Models for Verifiability The Helios Voting System 5 / 56

Participants

• Election administrator: Create the election, add the questions,
combine partial tallies

• Bulletin’ Board BB: Maintain votes (BTC) and audit data
• Voter VEl: Eligible voters optionally identified by random alias or
external authentication service (Google, Facebook, LDAP)

• Authenticated channel between voter and BB
• Trustees (Talliers) TA: Partially decrypt individual (in Helios 1.0)
or aggregated (in Helios 2.0) ballots

• Registrars (Helios-C) RA: Generate cryptographic credentials for
voters

• EA = (RA, TA,BB)

Helios: Attacks and Formal Models for Verifiability The Helios Voting System 6/ 56

Auditing Process - E2E Verifiability i

• Cast as intended:Benaloh challenge
• After ballot creation (encryption) but before authentication, each
voter can choose if they will audit or cast the ballot

• On audit: Helios releases the encryption randomness and the
voter can recreate the ballot using software of their choice

• An audited ballot cannot be submitted

• Recorded as cast:
• Each encrypted ballot and related data are hashed to a tracking
number

• Check if assigned number exists in the Ballot Tracking Center (BTC)

Helios: Attacks and Formal Models for Verifiability The Helios Voting System 7 / 56

Auditing Process - E2E Verifiability ii

• Tallied as recorded:
• Retrieve ballots from (BTC)
• Compare identities with eligible voters (if applicable)
• Recompute tracking numbers and verify proofs
• Aggregate the ballots and check equality with official encrypted
tally before decryption

• Verify decryption proofs

Individual verifiability: Verify cast as intended / recorded as cast

Universal verifiability: tallied as recorded

Eligibility verifiability

Helios: Attacks and Formal Models for Verifiability The Helios Voting System 8/ 56

Formal Description i

Model of Helios
VSHelios =
(Setup, SetupElection, Vote,Append, Valid, VerifyVote,Publish, Tally, Verify)

• Setup(1λ) = (G, q, g,H : {0, 1}∗ → Zq,BB =

∅, (DLProve,DLVerify)(EqDLProve, EqDLVerify), (DisjProve,DisjVerify))
where:

• G is a group where the DDH is hard (for ElGamal encryption)
• Computationally Sound and Honest Verifier Zero Knowledge
(Non-Interactive using Fiat-Shamir Heuristic)

• (DLProve,DLVerify) =
NIZKH{(g, pk), (sk) : loggpk = sk}

• (EqDLProve, EqDLVerify) =
NIZKH{(g, pk, h, R), (sk) : loggpk = loghR}

• (DisjProve,DisjVerify) =
NIZKH{(g, pk, R, S), (r) : (R,S) = Encpk(g0) OR (R,S) = Encpk(g1)}

Helios: Attacks and Formal Models for Verifiability The Helios Voting System 9/ 56

Formal Description ii

• SetupElection = (sk←$ Zq,pk = gsk, VEl, CS = {0, 1})
BB⇐ {pk, VEl, CS,H(pk||VEl||CS)}
Distributed Key Generation:

• Each member of the TA: ski ←$ Zq

• Publish pki := gski ,DLProve(g, pki, ski)
• pk :=

∏
TA pki

Distributed Decryption of (R,S):
• Each member of the TA computes:
Di := Rski , EqDLProve(g, pki, R,Di, ski)

• Plaintext S/
∏

TADi

Security analysis: TA modelled as a single entity

Helios: Attacks and Formal Models for Verifiability The Helios Voting System 10 / 56

Formal Description iii

• Vote(i, v) :

• (R,S) = (gr, gvpkr) = Encpk(gv, r), r ←$ Zq

• πVote = DisjProve(g, pk, R, S, r)

• Valid(b) ∈ {0, 1} :
Return 1 iff i ∈ VEl ANDDisjVerify(πVote) = 1

well-formed ballots
• Append(b,BB)
If Valid(b) = 1 then the ballot is post on the BB
Some other checks might also be performed (i.e. check if there is an identical
ballot)
well-formed BB contains only valid ballots

• VerifyVote(BB,b) ∈ {0, 1} Check if b ∈ BB
• Publish(BB) = PBB where PBB = {(R,S), πVote}
only the last unique ballots appear for each voter without any id
typically occurs after all voters have voted

Helios: Attacks and Formal Models for Verifiability The Helios Voting System 11 / 56

Formal Description iv

• Tally(PBB, sk)

• Validates all ballots in BB
• (RΣ, SΣ) :=

∏
b∈PBB(Rb, sb)

• gt := Decsk(RΣ, SΣ)

• Compute small t
• πTally = EqDLProve(g, pk, RΣ, SΣg

−t, sk)
• Verify(PBB, t, πTally)

• Check correct construction of PBB (last vote counts, no duplicate
ciphertexts, i ∈ L, valid πVote for all ballots)

• (RΣ, SΣ) :=
∏

b∈PBB(Rb, Sb)

• Check if (RΣ, SΣ) match values in πTally

• Check if EqDLVerify(πTally) = 1

Helios: Attacks and Formal Models for Verifiability The Helios Voting System 12 / 56

The Σ protocol (EqDLProve, EqDLVerify) (Schnorr)

NIZKH{(g,pk), (sk) : loggpk = sk}

DLProve(g,pk, sk)
• T := gt, t←$ Zq

• c := H(g, pk, T)

• s := t− sk · c

• return (T, c, s) or (c, s)

EqDLVerify(T, c, s)
return if T = gspkc or alternatively: check if c = H(g, pk, gspkc)

As a Σ-protocol it can be simulated by selecting the challenge before the commitment

Simulate(g,pk, c)
• s←$ Zq

• T := gspkc

• return (T, c, s)

Helios: Attacks and Formal Models for Verifiability The Helios Voting System 13 / 56

The Σ protocol (EqDLProve, EqDLVerify) (Chaum Pedersen)

NIZKH{(g,pk, h, R), (sk) : loggpk = loghR = sk}

EqDLProve(g,pk, h, R)

• T1 := gt, T2 := ht, t←$ Zq

• c := H(g,pk, h, R, T1, T2)

• s := t− sk · c
• return (T1, T2, c, s)

EqDLVerify((g,pk, h, R), (T1, T2, c, s))

return
T1 = gspkc ANDT2 = hsRc

As a Σ-protocol it can be
simulated by selecting the
challenge before the commitment

Simulate(g,pk, R, S, c)

• s←$ Zq

• T1 := gspkc, T2 := hsRc

• return (T1, T2, c, s)

Helios: Attacks and Formal Models for Verifiability The Helios Voting System 14 / 56

The Σ protocol (DisjProve,DisjVerify) (Witness indistinguishable
Chaum - Pedersen)

NIZKH{(g,pk, R, S), (r) : (R,S) = Encpk(g0) OR (R,S) = Encpk(g1)}

(R,S) = Encpk(g0) OR (R,S) = Encpk(g1)
(R,S) = (gr, g0pkr) OR (R,S) = (gr, g1pkr)

loggR = logpkS OR loggR = logpk(S/g)

EqDLProve(g,pk, R, S, r) OR EqDLProve(g,pk, R, S/g, r)

Assuming the voter has voted for 0:

π = EqDLProve(g,pk, R, S, r)||Simulate(g,pk, R, S/g, cS)

where: cr + cS = cH

Helios: Attacks and Formal Models for Verifiability The Helios Voting System 15 / 56

Pitfalls of the Fiat-Shamir Heuristic

Bernhard, Pereira, Warinschi (2012) How Not to Prove Yourself:
Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios.
ASIACRYPT 2012

• Weak FS: Input to hash function contains only commitment
c = H(T)

• Strong FS: Input to hash function contains commitment,
statement to be proved and all public values generated so far.

If the prover is allowed to select their statement adaptively then the
weak FS yields unsound proofs

Proofs created using the weak FS have implications to the privacy
and verifiability of Helios and other similar voting systems.

Helios: Attacks and Formal Models for Verifiability The Helios Voting System 16 / 56

The Strong Fiat - Shamir
Transform

Pitfalls of the Fiat-Shamir Heuristic (cont’d)

DLProve(g,pk) proves knowledge of DLOG for a particular pk ∈ G
given as input to the prover

If pk can be selected adaptively (after the proof):

• Select T ←$ G

• Compute c := H(T)
• Select s←$ Zq

• The tuple (T, c, s) is a proof of knowledge for pk = (g−sT)
1
c for

which sk is not known!
• Indeed: gspkc = gs(g−sT)c

1
c = T

Helios: Attacks and Formal Models for Verifiability The Strong Fiat - Shamir Transform 17 / 56

Pitfalls of the Fiat-Shamir Heuristic (cont’d)

Assume that in EqDLProve(g, pk, h, R, sk) the prover can select the statement
(g, pk, h, R) adaptively.

• Select a, b, r, f ←$ Zq

• Compute: T1 := ga, T2 := gb, h := gr, R := gf

• Compute: c := H(T1, T2)

• Compute s := b−cf
r

• Set sk = a−s
c

The proof verifies

gspkc = gs(g
a−s
c)c = ga = T1

hsRc = (gr)
b−cf

r gfc = gb = T2

but loggpk ̸= loghR (unsound!)

loggpk = a−s
c

= a
c
− b−cf

rc
= a

c
− b

rc
+ f

r
= f

r
+ ra−b

rc

and loghR = loghg
f = loggrg

f = f
r

Helios: Attacks and Formal Models for Verifiability The Strong Fiat - Shamir Transform 18 / 56

Implications: Non-Malleable encryption

Malleability: Transform a ciphertext into another valid ciphertext

Enc+ PoK: A common way to achieve non malleability

append a NIZK PoK of randomness to the ciphertext

For input m ∈ G:

Encpk(m) = (gr,m · pkr, c, s) where: r ←$ Zq , (c, s) = DLProve(g, gr, r)

If wFS is used then the scheme is malleable:

For c1 = (R,S, c, s) select u←$ Zq and create c2 = (R · gu, S · pku, c, s− cu)

The ciphertext was changed, but the proof (c, s− cu) verifies.

gs−cu(Rgu)c = (gsRc)g−cugcu = (gsRc) = T (valid from the original proof)

Theorem
Enc+ PoK with sFS provides NM − CPA

Helios: Attacks and Formal Models for Verifiability The Strong Fiat - Shamir Transform 19 / 56

Implications to Helios - Denial of Service attack

Each member TAi computes: Di = Rski , EqDLProve(g, pki, R,Di, ski) for specific pki
A malicious TAi can cheat by first creating a proof and then selecting Di such that:

• Select (a, b)←$ Zq

• Compute: T1 := ga, T2 := gb

• Compute: c := H(T1, T2)

• Compute s := a− ski · c

• Compute Di := (R−sT2)
1
c

The proof verifies: gspkci = ga = T1 and RsDc
i = Rs(R−sT2) = T2

However: loggpki = ski but
logRDi = logRR

−s
c + logRg

b
c = ski − a

c
+ rb

c
= ski + rb−a

c
where gr = R

This means that tally decryption yields a random group element⇒ instead of gt

Denial of service attack to compute DLOG

Helios: Attacks and Formal Models for Verifiability The Strong Fiat - Shamir Transform 20 / 56

Application to Helios - Undetectably alter result

Goal:
Announce election result t′ ̸= t

Assumptions:
• The TA is corrupted and can eavesdrop on the randomness of all
voters (realistic assumption since Helios generates it)

• Actively corrupt a single voter - casts a last vote

The TA creates a ‘proof’ (c, s) of correct tallying:

• Select (a, b)←$ Zq

• Compute: T1 := ga, T2 := gb

• Compute: c := H(T1, T2)

• Compute s := a− sk · c

Helios: Attacks and Formal Models for Verifiability The Strong Fiat - Shamir Transform 21 / 56

Application to Helios - Undetectably alter result (cont’d)

• All voters vote, except for the corrupt voter.
• The current result is t and encrypted as (R,S) = (gr, gtpkr)
• The TA knows it and can compute t by decrypting
• From individual randomness they know r =

∑
i ri

• The TA creates but does not release the proof (c, s)
• The TA selects r′ := b−c(t−t′)

s+c·sk

• The corrupt voter casts (gr′−r,pkr
′−r) which is a valid 0 vote.

• The complete product is: (R′, S′) = (gr
′
, gtpkr

′
)

• The encrypted tally does not change, but...

Helios: Attacks and Formal Models for Verifiability The Strong Fiat - Shamir Transform 22 / 56

Application to Helios - Undetectably alter result (cont’d)

• The proof (c, s) is also valid for the relation
loggpk = logR′(S′g−t

′
)

• So the announced tally is verified as t′

Since s is valid for loggpk = sk: T1 = gspkc

R′s(S′g−t
′
)c = (gr

′
)s(gtpkr

′
g−t

′
)c

= gr
′(a−c·sk)+ct+c·sk·r′−t′c

= gar
′+c(t−t′)

= g
b−c(t−t′)

a a+c(t−t′)

= gb

= T2

Helios: Attacks and Formal Models for Verifiability The Strong Fiat - Shamir Transform 23 / 56

Application to Swiss Voting

S. J. Lewis, O. Pereira, and V. Teague, “How not to prove your election outcome: The use of
non-adaptive zero knowledge proofs in the Scytl-SwissPost Internet voting system, and its
implications for decryption proof soundness”

R. Haenni, “Swiss post public intrusion test: Undetectable attack against vote integrity and secrecy”

but in Australia:

(borrowed from https://git.openprivacy.ca/sarah/presentations/raw/branch/
master/20191017--sarah-jamie-lewis-on-e-voting-et-al_slides.pdf)

Helios: Attacks and Formal Models for Verifiability The Strong Fiat - Shamir Transform 24 / 56

https://git.openprivacy.ca/sarah/presentations/raw/branch/master/20191017--sarah-jamie-lewis-on-e-voting-et-al_slides.pdf
https://git.openprivacy.ca/sarah/presentations/raw/branch/master/20191017--sarah-jamie-lewis-on-e-voting-et-al_slides.pdf

Application to modern constructions

FROZEN HEART (FoRging Of ZEro kNowledge proofs)

• Girault’s proof of knowledge protocol (Schnorr over a composite
modulus)

• Bulletproofs
• PLONK

Takeaway
The Fiat-Shamir hash computation must include all public values
from the zero-knowledge proof statement and all public values
computed intermediately the proof (i.e., all random “commitment”
values)

https://blog.trailofbits.com/2022/04/13/
part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/

Helios: Attacks and Formal Models for Verifiability The Strong Fiat - Shamir Transform 25 / 56

https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/
https://blog.trailofbits.com/2022/04/13/part-1-coordinated-disclosure-of-vulnerabilities-affecting-girault-bulletproofs-and-plonk/

Verifiability

Introduction i

Verifiability
The property that enables voters to regain the trust endangered by
the volatile nature of computer systems that implement e-voting
and the adversarial motives of voting authorities (systemic errors
or malice)

Subnotions:

• Individual Verifiability (cast as intended / recorded as cast)
• Universal Verifiability (tallied as recorded)
• Eligibility Verifiability (avoid ballot stuffing)

Helios: Attacks and Formal Models for Verifiability Verifiability 26 / 56

Introduction ii

Trust Assumptions: EA members are totally corrupted and cooperate
to affect the election result to their advantage

• Universal Verifiability: TA is corrupted
• Eligibility Verifiability: identify if a ballot was cast by a voter with a
right to vote

• Corruption of BB: depends on the model

A controls a subset of the voters

Verifiability does not mean verification

Do all the voters verify their ballots?

Helios: Attacks and Formal Models for Verifiability Verifiability 27 / 56

Individual Verifiability

Intuition
The voters verify that their ballots are included in the tally

A necessary condition
All ballots are unique

Clash attacks
Two or more voters are pointed to verify the same ballot

A has at least one ballot to use to affect the result

Note
Paper-based voting systems do not possess individual verifiability

Helios: Attacks and Formal Models for Verifiability Verifiability 28 / 56

Clash attacks on Helios

The use of aliases greatly affects the adversarial capability of
mounting clash attacks

Helios without aliases
ElGamal probabilistic encryptions: If two voters find the same
ciphertext then a clash attack has been mounted

A natural clash occurs with negligible probability

Helios: Attacks and Formal Models for Verifiability Verifiability 29 / 56

Clash attacks on Helios

Helios with aliases
• Assumption: Adversarial EA that knows 2 or more voters might
vote for the same candidate

• Attack:
• Provides them with the same alias
• Modifies user interface to always select the same random coins for
these voters (regardless of the number of audits)

• Note: audit does not require that successive ballots are different
(i.e. the use of different random coins)

• All voters verify the same ballot→ individual verifiability
succeeds

• The EA then submits a ballot containing its preferred option in
the free slot

Helios: Attacks and Formal Models for Verifiability Verifiability 30 / 56

Clash attacks on Helios

Countermeasures
• The Bulletin’ Board is published after each vote and not in the
end

• Voters always observe the BB before vote casting
• Voters check audited ballots for exact duplicates
• Voters contribute to the encryption randomness (e.g.by typing a
random phrase)

• Use unique real world identities (external authentication)
• But: This might leak abstention or not
• Illegal in some jurisdictions (e.g. France)
• Might also mean repercussions for those who voted / did not vote
• Relevant property: Participation privacy

Helios: Attacks and Formal Models for Verifiability Verifiability 31 / 56

Individual verifiability formal model

Algorithm 1: Individual verifiability IndVerVS,A
Input : security parameter λ
Output: {0, 1}

(CS,vt0,vt1)← A(1λ)
b0 := VS.Vote⟨A(), Vi(vt0),pkEA, CS,BB⟩
b1 := VS.Vote⟨A(), Vi(vt1),pkEA, CS,BB⟩
if b0 = b1 AND b1 ̸= ⊥ then

return 1
else

return 0
end

Helios: Attacks and Formal Models for Verifiability Verifiability 32 / 56

Individual verifiability definition

Definition
A voting scheme VS satisfies individual verifiability if
∀PPT A : Pr

[
IndVerVS,A(1λ) = 1

]
≤ negl(λ)

Helios without aliases satisfies IndVer assuming honest generation
of random coins
Since
VS.Vote ≡ Enc⇒ Pr

[
IndVerVS,A(1λ) = 1

]
= Pr[b0 = b1] = negl(λ).

Helios with aliases does not satisfy IndVer
Because of the clash attack

Note
This model deals only with the recorded as cast part of individual
verifiability

Voter intent is not taken into account (cast as intended)

Even if it did, could there be a negligible probability of success?
Helios: Attacks and Formal Models for Verifiability Verifiability 33 / 56

Universal Verifiability i

Intuition
Everyone (voters, external auditors) can verify that the tally
corresponds to the voter’s selections

Adversarial Goal
Present a tally along with fabricated evidence that passes
verification

A baseline is needed: A function result that correctly captures the
tally:

Helios: Attacks and Formal Models for Verifiability Verifiability 34 / 56

Universal Verifiability ii

Definition
result(pkTA,BB, CS)[v] = nv ⇔ ∃nvb ∈ BB : b = Vote(v)

Problem: How to calculate it in proofs - two approaches:

• Construction using an extractor that retrieves votes from ballots
(does not apply if ballots are information-theoretically
protected)

• Mere existence of corrupted votes + (honest votes are known to
the challenger)

Helios: Attacks and Formal Models for Verifiability Verifiability 35 / 56

Universal Verifiability - A first definition

Algorithm 2: Universal Verifiability UniVerVS,A
Input : security parameter λ
Output: {0, 1}
(CS,BB,TA, πTA)← A(1λ)
T← result(BB)
if TA ̸= T AND VS.Verify(TA, πTA , pkTA,BB, CS) = 1 then

return 1
else

return 0
end

Definition
A voting scheme VS satisfies universal verifiability if
∀PPT A : Pr

[
UniVerVS,A(1λ) = 1

]
≤ negl(λ)

Definition
A voting scheme VS (with external authentication) satisfies election
verifiability if
∀PPT A : Pr

[
IndVerVS,A(1λ) = 1

]
+ Pr

[
UniVerVS,A(1λ) = 1

]
≤ negl(λ)

Helios: Attacks and Formal Models for Verifiability Verifiability 36 / 56

Universal Verifiability - Additional Considerations

• Are all the ballots in the BB valid? Is there revoting?
• Do all voters verify their ballots? If the verifiability definition
demands it then it is too strong.

• Is a registration authority RA required? Is it corrupted? (External
vs internal authentication)

• Is the BB passive - simply stores all the ballots? Is it corrupted
(ballot stuffing)?

Helios: Attacks and Formal Models for Verifiability Verifiability 37 / 56

Universal Verifiability - A Finer Grained Approach

Universal Verifiability with RA and BB
• RA provide cryptographic credentials to the voters
• Vote includes these credentials
• BB is not passive: can add or remove ballots
• Weak Universal Verifiability: Both the RA and the BB are honest.
• Strong Universal Verifiability: The RA and the BB are not
corrupted at the same time.

• Against corrupt RA
• Against corrupt BB

The RA′s objective is to counter BB corruption and vice versa

Helios: Attacks and Formal Models for Verifiability Verifiability 38 / 56

Universal Verifiability - Additional Considerations

A’s objective
Cause a tally to be accepted if either:

• ballot stuffing occurs - the number of corrupted votes exceeds
the number of corrupted voters. However, the choices should be
admissible.

• verification was bypassed - some of the votes of the honest
voters that did verify are not taken into account

• some of the votes of honest voters that did not check are not
taken into account - all would be too strong

Helios: Attacks and Formal Models for Verifiability Verifiability 39 / 56

Helper Oracles

Algorithm 3: Oracles for Universal Verifiability Definitions
Oracle Register(i)

(ski, pki) := VS.Register⟨RA(skRA), Vi()⟩
VEl ⇐ (i, pki)

Oracle Corrupt(i)
if i ∈ VEl then

VCorr ⇐ (i, pki, ski)
end

Oracle Vote(i, vti)

if i ∈ VEl AND i /∈ VCorr then
if ∃(i, ·, ·) ∈ VHon then

VHon := VHon \ {(i, ·, ·)}
end
b := VS.Vote(i, vti, ski)
VHon ⇐ (i, vti, b)

end

Oracle Cast(i, b)
BB⇐ (i, b)

Helios: Attacks and Formal Models for Verifiability Verifiability 40 / 56

Weak universal verifiability

Algorithm 4: Weak universal verifiability game W-UniVer
Input : security parameter λ
Output: {0, 1}

(prms, pkTA, skTA)← VS.Setup(λ)
(TA, πTA)← ARegister,Corrupt,Vote,Cast()
if VS.Verify(TA, πTA , ·) = 0 OR TA = ⊥ then

return 0
end
if ∃nVCorr : 0 ≤ nVCorr ≤ |VCorr| AND ∃{vt

VCorr
i }

nVCorr
i=1 ∈ CS :

TA = result(vtVCorri)⊕ result(vtVHoni) then
return 0 // A fails if all honest and some corrupted votes

are included in the final valid tally
else

return 1
end

Note:

A controls only EA and VCorr - cannot add-delete ballots but may try to input invalid
options or alter tally.

Helios: Attacks and Formal Models for Verifiability Verifiability 41 / 56

Strong Universal Verifiability

Algorithm 5: Strong universal verifiability game (with malicious BB)
S-UniVer-BB
Input : security parameter λ
Output: {0, 1}
(prms, pkTA, skTA)← VS.Setup(1λ)
(BB, TA, πTA)← ARegister,Corrupt,Vote()

if VS.Verify(BB, TA, πTA , ·) = 0 OR TA = ⊥ then
return 0

end
VChck = {(IDChcki , vtChcki , bChcki)}nChck

i=1 // Voters who verified
if ∃nVCorr : 0 ≤ nVCorr ≤ |VCorr| AND ∃{vt

VCorr
i }

nVCorr
i=1 ∈ CS AND

∃n′ : 0 ≤ n′ ≤ |VHon| − |VChck| AND ∃{vt′
i}

n′
i=1 // Voters that did not check

such that: TA = result(vtVCorri)⊕ result(vtVChcki)⊕ result(vt′
i) then

return 0 // A fails if the final valid tally corresponds to valid
votes of all who checked, some that did not and ballots were
not stuffed/deleted

else
return 1

end

Note: The corrupted BB might add, replace or delete ballots

Helios: Attacks and Formal Models for Verifiability Verifiability 42 / 56

Strong Universal Verifiability

Algorithm 6: Strong universal verifiability game (with malicious RA)
S-UniVer-RA
Input : security parameter λ
Output: {0, 1}
(prms, pkTA, skTA)← VS.Setup(1λ)
(TA, πTA)← ACast,Corrupt,Vote()

if VS.Verify(BB, TA, πTA , ·) = 0 OR TA = ⊥ then
return 0

end
VChck = {(IDChcki , vtChcki , bChcki)}nChck

i=1 // Voters who verified
if ∃nVCorr : 0 ≤ nVCorr ≤ |VCorr| AND ∃{vt

VCorr
i }

nVCorr
i=1 ∈ CS AND

∃n′ : 0 ≤ n′ ≤ |VHon| − |VChck| AND ∃{vt′
i}

n′
i=1 such that:

TA = result(vtVCorri)⊕ result(vtVChcki)⊕ result(vt′
i) then

return 0 // A fails if the final valid tally corresponds to the
votes of all who checked, some that did not and ballots were
not cancelled

else
return 1

end

Note: Ballot stuffing/erasing does not occur through the BB but through the RA (via invalid
credentials)

Helios: Attacks and Formal Models for Verifiability Verifiability 43 / 56

Proving weak universal verifiability - Helper notions i

Correctness
Honest executions yield the expected result:
honest ballots are accepted
tally is verified
the output of tally corresponds to the output of result

Pr

(T, πT) = Tally({b1, · · ·bn}) where
{bi = Vote(i, vi, ski), vi ∈ CS}ni=1;

Valid(bi) = 1AND
Verify({b1, · · ·bn}, T, πT) = 1AND
T = result(v1, · · · , vn)

 = 1

Helios: Attacks and Formal Models for Verifiability Verifiability 44 / 56

Proving weak universal verifiability - Helper notions ii

Tally uniqueness
A correct tally of an election is unique

Pr

(BB, T1, πT1 , T2, πT2)← A(1λ);
T1 ̸= T2;

Verify(BB, T1, πT1
) = 1AND

Verify(BB, T2, πT2) = 1

 = negl(λ)
You cannot get two results from the same ballots and verify the
result.

Helios: Attacks and Formal Models for Verifiability Verifiability 45 / 56

Proving weak universal verifiability - Helper notions iii

Accuracy
VS has accuracy if ∀b (even adversarial):

• Valid(b) = 1AND Verify({b}, Tb, πTb) = 1⇒ vb ∈ CSANDTb =

result(vb)
• Any ballot that passes the validity test is a valid vote
• Even if it is generated by the adversary

• Verify(BB, Tally(BB, sk)) = 1, ∀BB
• Any honestly generated tally and proof passes verification
• usually holds by design

Partial counting
result(S1 ∪ S2) = result(S1)⊕ result(S2) where
S1, S2 are sequences of votes

Helios: Attacks and Formal Models for Verifiability Verifiability 46 / 56

Proving weak universal verifiability - Helper notions iv

Partial tallying
If (T1, ·) = Tally(BB1, sk),
(T2, ·) = Tally(BB2, sk),
(T, ·) = Tally(BB1 ∪ BB2, sk) and
BB1 ∩ BB2 = ∅ then:
T = T1 ⊕ T2

Helios: Attacks and Formal Models for Verifiability Verifiability 47 / 56

Sufficient conditions for weak universal verifiability i

Theorem
If VS satisfies correctness, tally uniqueness, partial tallying, and
accuracy then it provides weak universal verifiability

Let (BB, T, πT) the output of VS such that Verify(BB, T, πT) = 1 and
T ̸= ⊥

BB is honest⇒ ∀b ∈ BB : Valid(b) = 1

Split BB into disjoint honest and corrupt parts BB = BBHon ∪ BBCorr
BBHon
BB is honest⇒ no honest ballot has been deleted
From correctness and partial tallying:
(THon, π1) = Tally(BBHon, sk) with THon = result({vi}nHon

i=1) where
{bi = Vote(i, vi)}nHon

i=1

Helios: Attacks and Formal Models for Verifiability Verifiability 48 / 56

Sufficient conditions for weak universal verifiability ii

BBCorr
Since BB is honest means at most one ballot per voter:

|BBCorr| ≤ |VCorr|

Compute
(TCorr, π2) = Tally(BBCorr, sk)

From accuracy (2) and the honest BB condition:

Verify(BBCorr, TCorr, π2) = 1

From tally uniqueness this tally is unique

From accuracy (1): TCorr = result({vi}nCorr
i=1)

From partial tallying: T = Tally(BBCorr ∪ BBHon, sk)

Helios: Attacks and Formal Models for Verifiability Verifiability 49 / 56

Helios is weakly verifiable under the DLOG assumption in the
random oracle model

Correctness: Follows from the correctness of El-Gamal and
completeness of Schnorr, Chaum - Pedersen and NIZK.

Tally Uniqueness: A verified tally passes proofs generated by
DisjProve, EqDLProve. Uniqueness follows from the special
soundness of the Σ protocols (DLOG)

Accuracy: If Valid(·) = 1 and Verify(·) = 1 then v ∈ CS with negligible
soundness error 1

q because of Σ protocol (DisjProve,DisjVerify).

Helios: Attacks and Formal Models for Verifiability Verifiability 50 / 56

Helios and strong universal verifiability i

A generic construction from VS to VSσ with strong universal
verifiability:

• EUF-CMA-secure signature scheme
• Registration authority that hands credentials (pku, sku) to the
voters

• Registration authority publishes public credential list
• Voters use the credentials for ballot signing (with last vote
counts update)

• BB uses an identification scheme to allow the voters to cast a
ballot (This means that each voter has two credentials)

• Ballot validation (by the BB) includes signature verification and
every public credential is unique and registered

• BB maintains correspondence between (id,pki) to avoid
multiple impersonation attacks

Helios: Attacks and Formal Models for Verifiability Verifiability 51 / 56

Helios and strong universal verifiability ii

Helios: Attacks and Formal Models for Verifiability Verifiability 52 / 56

Helios and strong universal verifiability iii

Lemma
If VS has weak verifiability , tally uniqueness and σ is EUF-CMA
then VSσ provides verifiability against a corrupted BB

Every adversary Aσ against VSσ is as powerful as an adversary A
against VS, unless he can break EUF-CMA.

Facts (from strong verifiability definition):

• T ̸= ⊥
• BBσ is well-formed, since it passes Verifyσ . All ballots are valid.

As a result: ∀(T, π) : Verify(BBσ, T, π) = Verify(BB, T, π)

• Every vote vt ∈ VChck that has a corresponding ballot
b = (pku, a, σ) in BBσ has also a ballot a in BB. a is valid from
weak verifiability.

Helios: Attacks and Formal Models for Verifiability Verifiability 53 / 56

Helios and strong universal verifiability iv

• Every vote vt ∈ VHon \ VChck that has a corresponding ballot in
BBσ corresponds to an honest vote (output of Vote)
If not: since it is placed in BBσ it must have a valid signature.
Since σ does not come from Vote then it must have been forged
(contradiction).
Conclusion: Every vt ∈ VHon \ VChck comes from Vote.

• nCorr ≤ |VCorr|
If not:
There are two (at least 2) ballots in BBσ with the same
credential. But BBσ is well-formed.
Or: Aσ added a valid ballot without calling Corrupt (without
knowing ski). This contradicts unforgeability again.

Helios: Attacks and Formal Models for Verifiability Verifiability 54 / 56

Helios and strong universal verifiability v

Lemma
If VS has weak verifiability, tally uniqueness then VSσ provides
verifiability against a corrupted RA

Since the RA is corrupted Aσ has all the credentials.

However the authenticated channel between A and the honest BB
forbids him from ballot stuffing

Result:

Theorem
A voting system with weak verifiability combined with an
existentially unforgeable signature scheme provides strong
universal verifiability.

Helios: Attacks and Formal Models for Verifiability Verifiability 55 / 56

References

1. Ben Adida. “Helios: web-based open-audit voting”. In: Proceedings of the 17th
conference on Security symposium. USENIX Association, 2008, pages 335– 348.

2. Bernhard D., Pereira O., Warinschi B. (2012) How Not to Prove Yourself: Pitfalls of
the Fiat-Shamir Heuristic and Applications to Helios. ASIACRYPT 2012.

3. Hao, F., Ryan, P.Y.A. (Eds.). (2016). Real-World Electronic Voting: Design, Analysis
and Deployment (1st ed.). Auerbach Publications (Chapter 11: Voting with Helios
Olivier Pereira)

4. Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachène.
“Election Verifiability for Helios under Weaker Trust Assumptions”. In: ESORICS
(2). Volume 8713. Lecture Notes in Computer Science. Springer, 2014, pages
327–344.

5. Ben Smyth, Steven Frink, and Michael R. Clarkson. “Computational Election
Verifiability: Definitions and an Analysis of Helios and JCJ”. In: IACR Cryptol. ePrint
Arch. 2015 233.

6. V Cortier, D Galindo, R Küsters, J Müller, and T Truderung. “SoK: Verifiability
Notions for E-Voting Protocols”. In: IEEE Security and Privacy Symposium. 2016,
pages 779–798

Helios: Attacks and Formal Models for Verifiability Verifiability 56 / 56

	The Helios Voting System
	The Strong Fiat - Shamir Transform
	Verifiability

