
Exponential Information
Gathering

For reaching consensus - part 1
By: Pourandokht Behrouz

Exponential Information Gathering

• A strategy for consensus algorithms, which works for Byzantine agreement

• Based on EIG tree data structure

• By Byzantine we mean: “Byzantine Generals Problem” [Lamport, Pease,
Shostak]

• EIG was introduced by Bar-Noy, D. Dolev (1987)

• The full name of their algorithm as they stated in their paper:
• Exponential Information Gathering with Recursive Majority Voting
• In short: Exponential Algorithm

• The algorithm works for both scenarios of the problem:
• When there is a Leader who sends the initial values (Commander)
• When each Processor has its own initial value (0 or 1)

Byzantine Generals Problem

• Several division of the Byzantine army are camped outside an enemy city, commanded by a
general

• General = “processor”

• Generals communicate by messenger

• Use a network, i.e., distributed systems

• Some may be traitors

• Fail, but in the worst possible ways

• All loyal generals agree on the same plan
(attack or retreat)

• A small number of traitors cannot cause the loyal
generals to adopt a bad plan

Attack!

Wait…

Attack!

Attack!
No, wait!

Surrender!

Wait…

Byzantine Generals Problem

• Impossibility results :

• They proved: total number of processors n should be n ≥ 3t + 1 where t is the number of faulty
processors

Comm.
Gen.

Liut.
1

Liut.
2

Attack Attack

He said
“Retreat”

Comm.
Gen.

Liut.
1

Liut.
2

Attack Retreat

He said
“Retreat”

Variations of the Problem

• Byzantine agreement problem: also referred to as broadcast problem,
is when one out of n nodes (players) is the Commander general. And
if he is non faulty every non-faulty(correct) node, should agree on his
decision (value). [BDDS][MW]

• Distributed Consensus: when every node has their own initial value
(decision) and all the correct player should come to consensus on the
same decision which should be originated from one of the non faulty
procesors. [BG1]

• EIG tree was originally introduced for Byzantine agreement (BA)
variation [BDDS], but later used for Distributed Consensus as
well.[BG1 , GM and more]

Formal problem statement

• We study the distributed consensus problem with the following
assumptions:
• Synchronous model, n processors

• G = (V,E), undirected graph (bidirected edges)

• Each processor has input 1 (attack) or 0 (don’t attack)

• Some messages can be lost or altered.

• All should eventually set decision output variables to 0 or 1

Correctness Conditions

• Termination: every non faulty processor decides on an output (All
nonfaulty processors eventually decide)

• Agreement: All non faulty processors decide on the same output (no
two processor decide differently)

• Validity: if all processors begin with the same input, then the output is
the same value:

• If all start with 0, then 0 is the only allowed decision.
• If all start with 1 and all messages are successfully delivered, then 1 is the only allowed

decision

• Integrity: if a non faulty processor decides on y then y must have
been proposed by some non-faulty processor (this makes sure the
consensus result is not originated from an adversary)

Some Points to Consider

• Every algorithm used for BFT consensus should meet the correctness
conditions stated

• EIG strategy with the recursive majority votes on the tree data structures at
each node has been proved to meet the correctness conditions

• The optimal round for the algorithm is t + 1 (t is the number of faulty
processors)

• Total number of players: n ≥ 3t + 1

• The Exponential Algorithm reaches Byzantine agreement in t + 1 rounds
tolerating t < n / 3 faults (the same for consensus)

• Time complexity of the Exponential Algorithm has been enhanced to
polynomial, based on EIG but not using recursive majority voting (out of
scope of this presentation)

The Algorithm in brief

• Processors send and relay values for number of rounds

• Recording the values they receive along various communication paths in a data
structure called an EIG tree

• At the end, they use a commonly agreed-upon decision rule and decide based on
the values recorded in their trees

P1

P4

P3

P2

About Exponential Algorithm
• Each processor maintains a large tree of height at most t (BA

problem) and t+1 (Consensus) [BG1][GM].

• This difference is because in EIG protocol for BA, at first round
commander sends his initial value to n - 1 nodes and does nothing
else so in the rest of the rounds (t rounds) every other nodes
communicate the values. The height of the tree at each node is t and
the commander has a tree of height 1.

• In EIG for consensus case, all n nodes have their initial value and they
communicate for t + 1 rounds so the height of the tree is t + 1

• In both cases we only need t + 1 rounds of exchanges

• As we said each processor incrementally constructs a tree-based data
structure which we will call it EIG tree.

• Root of the tree is of dept 0

• Inductively, the depth of a node is greater by one than the depth of
its parent

• We are only interested in EIG trees of depth at most t + 1

• Each path from root to leaf contains t + 1 vertices

• In EIG tree, a node of depth d has n – d children. The root has n
children

About Exponential Algorithm

EIG tree node’s Labeling

• The outgoing edges from the root are labelled 1 … n

• A node of depth d ≥ 1 has an edge labeled 𝑖 for every processor
name 𝑖 that does not appear on the path leading from the root to the
node

• Thus, no label appears twice on a path from the root to a leaf

• The sequence of labels on the path from the root to a given node
uniquely determines this node or we can say:
• Let σ be an internal node: for every processor p not labeling an ancestor of σ,

σ has exactly one child labeled p thus no label appears twice in any path from
root to leaf (tree is without repetition)

• For each internal node, the sequence of the labels encountered traversing
from the root to that node, forms the node’s label

• There is 1 – 1 correspondence between string σ of up to t + 1 distinct
processors names and the nodes in an EIG tree of dept t + 1. So this is the
name of the corresponding node σ

• Root is labeled λ for an empty string
• The size of this label (size of the sequence) is equal to the level of the tree

which the node is at or
• The length of the string σ which will be denoted at |σ|, coincide with the

depth of σ
• There are two values associated with each node σ in processors i’s tree:

• A stored value denoted by 𝑡𝑟𝑒𝑒(σ) and a resolved value denoted by 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 σ or
𝑟𝑒𝑠(σ).

• To show this is the value of σ in tree i: 𝑡𝑟𝑒𝑒𝑖 (σ) and 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑖 (σ).
• Stored values are assigned during t + 1 round of information exchange, resolve values are

computed at the end in order to determine the decision value.

EIG tree node’s Labeling

EIG tree example

27

765761726721716712376371327321317312276271237231217213176172137132127123

7672713732312321171312

732
1

λ

….

…. ….….….

...

.

.

.

.

...

Exponential Algorithm
• In case of consensus problem: At first round each processor sends his value to all

other n – 1 ≥ 3t processors and each processor starts building its first level of the
tree.

• In case of BA problem: At first round commander sends his initial value to n – 1
other nodes and sits back. Other nodes receive this value and build their tree
storing this value at the root of their tree.

• At each remaining round, all processors add one level to their tree with the
message they have received

• At each round all processors broadcast values they have in the current level of their
tree

• A node is created for the tree in the round in which a value is stored in the node

Exponential Algorithm
• The messages received are broken up to form a new level in the tree

• Notice that a single message is received by i from j in a given round and this
reports on many values in j’s tree and is used to update many different nodes in
𝑡𝑟𝑒𝑒𝑖 and this message will not all be stored in a single node of the tree [GM]

• The information is gathered for t + 1 rounds until all nodes of dept t + 1 are
created

• At that point each processor applies to the tree a recursive data reduction
function, called resolve to obtain a new preferred value (this is done by preferring
the majority value of the children at each node) and at last step resolve the root
of the tree.

EIG Tree

• In the original paper by (Bar - Noy et al), the

tree built at each processor looks like this:

EIG algorithm for Byzantine agreement pseudo code

• Use EIG tree, construct the tree at each node
• Assume n > 3t + 1
• Relay messages for t+1 rounds
• Decorate the tree with values from V, replacing any garbage messages with default

value v0

• New decision rule:
– Call the decorations val(x), where x is a node label
– Redecorate the tree, defining newval(x)

• Proceed bottom-up

• Leaf: newval(x) = val(x)
• Non-leaf: newval(x) =

– newval of strict majority of children in the tree, if majority exists,
– v0 otherwise

– Final decision: newval(S) (newval at root)

Example: n = 4 , t = 1
• Four non faulty processors and 𝑃3 is faulty

• Initial values: 𝑃1 = 1 , 𝑃2 = 1 , 𝑃3 = 0, 𝑃4 = 0

• Round one: 𝑃3 lies to 𝑃2 and 𝑃4

• Round two

• 𝑃3:

1 2

S

43

14 4132 3412 31 4313 2321 24 42

1 1

1

00

1 000 1 11 0 01 1 0

Process 1

1 1

1

01

1 00 1 1 11 0 01 1 0

1 1

0

01

1 01 11 0 11 11 1 0

Process 2 Process 3 Process 4

0

Lies

Example: n = 4 , t = 1
• Four non faulty processors and 𝑃3 is faulty

• Initial values: 𝑃1 = 1 , 𝑃2 = 1 , 𝑃3 = 0, 𝑃4 = 0

• Round one: 𝑃3 lies to 𝑃2 and 𝑃4

• Round two

• 𝑃3:

1 2

S

43

14 4132 3412 31 4313 2321 24 42

1 1

1

00

1 000 1 11 0 01 1 0

Process 1

1 1

1

01

1 00 1 1 11 0 01 1 0

1 1

0

01

1 01 11 0 11 11 1 0

Process 2 Process 3 Process 4

0

Lies

1 1

0

00

1 01 1 1 11 0 01 1 0

Process 3

Example: n = 4, t = 1

• We saw t + 1 rounds (two rounds) of information exchange

• Each processor has built its own tree

• Now calculate newvals, bottom-up, choosing majority values (v0 = 0 if
no majority)

1 1

1

00

1 000 1 11 0 01 1 0

Process 1

1 1

1

01

1 00 1 1 11 0 01 1 0

1 1

0

01

1 01 11 0 11 11 1 0

Process 2 Process 3 Process 4

0

Example: n = 4, f = 1

• We saw t + 1 rounds (two rounds) of information exchange

• Each processor has built its own tree

• Now calculate newvals, bottom-up, choosing majority values (v0 = 0 if
no majority)

1 1

1

00

1 000 1 11 0 01 1 0

Process 1

1 1

1

01

1 00 1 1 11 0 01 1 0

1 1

0

01

1 01 11 0 11 11 1 0

Process 2 Process 3 Process 4

0

1 1

1

01

1 000 1 11 0 01 1 0

Process 1

1 1

1

01

1 00 1 1 11 0 01 1 0

1 1

1

01

1 01 11 0 11 11 1 0

Process 2 Process 3 Process 4

0
Corrected by taking majority

Proof of correctness for the Algorithm

• We first prove two Lemmas to be used in the next steps

• Then we check on the correctness conditions given for any BFT
algorithm

• We prove that these conditions hold (using the two lemmas)

Proof of correctness

• Lemma 1: If i, j, k are nonfaulty, then val(x)i = val(x)j for every node label x
ending with k

• Tree of the previous example (P3 is Faulty) look at Red labels:
• The tree at nonfaulty processor, P1 (i = 1):
• The same values are found in the tree of

P2 (j = 2) for the yellow nodes.
• Here P4 sends to P1,P2,P3 (k = 4)

• Proof: k sends same messages to i and j and they fill their trees accordingly

1 2

S

43

14 4132 3412 31 4313 2321 24 42

P1

P1

1 2

S

43

14 4132 3412 31 4313 2321 24 42

1 2

S

43

14 4132 3412 31 4313 2321 24 42

P2

1 2

S

43

14 4132 3412 31 4313 2321 24 42

P4• All yellow nodes have the same value in all P1, P2, P4
trees

• All Green nodes have the same value in all P1, P2, P4
trees

• All purple nodes have the same value in all P1, P2, P4
trees

• The Red nodes belongs to the faulty P3 so the values
depends on his lies.

Proof of correctness
• Lemma 2: If x ends with nonfaulty process index then v V such that

val(x)i = newval(x)i = v for every nonfaulty i.

• Proof: by Induction on lengths of labels, bottom up
• Basis: Leaf

o Lemma 1 implies that all nonfaulty processes have same val(x) (say x= 21, all processors has same
value at this node)

o newval = val for each leaf

• Inductive step: |x| = r t (|x| = t+1 at leaves, |21|= 2 so its at level 2 or the leaf level)
o Lemma 1 implies that all nonfaulty processes have same val(x), say v.
o We need newval(x) = v everywhere also
o Every nonfaulty process j broadcasts same v for x at round r+1, so val(xj)i = v for every nonfaulty j

and I
o By inductive hypothesis, also newval(xj)I = v for every nonfaulty j and I
o A majority of labels of x’s children end with nonfaulty process indices:

o Number of children of node x is n – t > 3t – t = 2t
o At most t are faulty

o So, majority rule applied by i leads to newval(x)i = v, for all nonfaulty i

Correctness Conditions

• Validity: if all processors begin with the same input, then the output is
the same value
• If all nonfaulty processes begin with v, then all nonfaulty processes broadcast

v at round 1, so val(j)i = v for all nonfaulty i, j
• By Lemma 2, also newval(j)i = v for all nonfaulty i,j
• Majority rule implies newval(S)i = v for all nonfaulty i
• So all nonfaulty i decide v

• Termination: All nonfaulty processors eventually decide
• Obvious

• Agreement: All non faulty processors decide on the same output
• Needs the concept of path covering and common node (next slides)

Agreement condition

• Path covering: Subset of nodes containing at least one node on each path from
root to leaf

• Common node: One for which all nonfaulty processes have the same newval
• If label ends in nonfaulty process index, Lemma 2 implies it’s common
• Might be others too

1 2

S

43

14 4132 3412 31 4313 2321 24 42

Agreement condition

• Lemma 3: There exists a path covering all of whose nodes are
common.

• Proof:
• Let C = nodes with labels of the form xj, j nonfaulty.

• By Lemma 2, all of these are common.

• Claim these form a path covering:

• There are at most t faulty processes.

• Each path contains t+1 labels ending with t+1 distinct indices.

• So at least one of these labels ends with a nonfaulty process index

1 2

S

43

14 4132 3412 31 4313 2321 24 42

Agreement condition

• Lemma 4: If there’s a common path covering of the subtree rooted at
any node x, then x is common

• Proof:
• By induction, from the leaves up,“Common-ness” propagates upward

• Lemmas 3 and 4 together imply that the root is common So:
• All nonfaulty processors get the same newval(S)

• Results in Agreement

Complexity of the Algorithm

• Using EIG Algorithm we have:
• Time: t + 1 (number of rounds)

• Communication: O(nt+1) which is exponential
• Despite the simplicity of the algorithm, the message size and the amount of local

computation required grow exponentially with t

• using other methods it has been improved in later algorithms to polynomial

• It also requires n > 3t processors

References

• [PSL] Pease, M., Shostak, R., and Lamport, L., “Reaching Agreement in the presence of
fault” JACM 27(2) (1980), pp. 228-234.

• [BDDS] A.Bar-Noy, D. Dolev, C. Dwork, and H. R. Strong, Shifting Gears: Changing
Algorithms on the Fly to Expedite Byzantine Agreement, “Proceedings of the sixth Annual
ACM Symposium on Principles of Distributed Computing, 1987,” pp. 42-51.

• [MW] Y. Moses, O. Waarts, “coordinated traversal: (t+1) Round Byzantine Agreement in
polynomial Time” Journal of Algorithms 17, 1994, pp.110-156 (received 1988, Revised
1992)

• [BG1] P. Berman, A. Garay, “Cloture Vote: n/4 Resilient Distributed Consensus in t+1
rounds. Preliminary version appeared as part of “Toward optimal Distributed Consensus”
in Proc. 30th IEEE symposium. On Foundation of computer science [BGP] and it is a part
of Garay’s P.h.D dissertation.

• [GM] J. A. Garay, Y. Moses, “Fully Polynomial Byzantine Agreement in t + 1 rounds –
Extended Abstract” Proc. 25th ACM Symposium on Theory of Computing (STOC 1993),
acm press, pp. 31-41, 1993.

Thank You

