The Algebraic Group Model

Thomas Souliotis

NTUA

June 8, 2023

Thomas Souliotis (NTUA)

The Algebraic Group Model

June 8, 2023

3 N 3

- Presentation of the Generic Group Model (GGM) and the Standard Model.
- Presentation and brief analysis of the *The algebraic group model and its applications.* proposed by Fuchsbauer, G., Kiltz, E., Loss, J. (2018) ([FKL18]).
- Beyond AGM and potential issues posed by Katz, J., Zhang, C., Zhou, H. S. (2022) in their paper: An analysis of the algebraic group model ([KZZ22]).

- Standard model is the model of computation in which the adversary is only limited by the amount of time and computational power available.
- Schemes that can be proven secure using only complexity assumptions (e.g. factorization) are said to be secure in the standard model.
- Mathematical Abstractions: The standard model employs mathematical abstractions and idealized assumptions to reason about the security properties of cryptographic protocols.
- **Rigorous Proof Techniques**: It enables rigorous proofs of security properties by formulating precise definitions, security notions, and reductions.

- GGM is an idealised cryptographic model, where the adversary is only given access to a randomly chosen encoding of a group, instead of efficient encodings, such as those used by the finite field or elliptic curve groups used in practice.
- GGM includes an oracle that executes the group operation.
- GGM mainly used to analyse computational hardness assumptions.

- Ideally proof in Standard Model (no simplifications)
- Idealizing via abstraction -> prove in the simplified/idealized model
 Example: ROM idealizes hash functions, GGM idealizes cyclic groups

Let $\mathbb{G} = \langle G, \circ, g \rangle$. A is generic if it only computes over \mathbb{G} as follows:

- Given $a, b \in \mathbb{G}$ compute $c = a \circ b$.
- Given $a, b \in \mathbb{G}$ check whether a = b.

- Work in every cyclic group.
- Information theoretic lower bounds (DLP, CDH, DDH, etc).
- Fitting abstraction for (some) elliptic curves.

- Representaton-based exploits (e.g. Jacobi symbols, index calculus-based attacks, etc).
- Deriving lower bounds is a difficult process (combinatorial arguments).
- Lower bounds are not modular -> new boundaries for a new cryptographic protocol.
- Many algorithms of practical interest are not generic.

- Weaker model assumptions than GGM.
- $GGM \le AGM \le$ Standard Model.
- Reduction based and easy to work with (allows easy proofs).
- Improved abstraction of reality over GGM.
- Results from AGM carry over to GGM.
- Captures a broad spectrum of important algorithms.

An algorithm A_{ALG} is algebraic if it fulfills the following:

- $\bullet\,$ Given a list of all group elements $L=(L_1,...,L_t)$ given to A_{ALG} during its execution
- Whenever A_{ALG} outputs a group element $Z \in \mathbb{G}$, it also outputs a representation $z = (z_1,...,z_t)$ s.t. $Z = \prod_i L_i^{z_i}$

Basically an Algebraic Algorithm always tells us how it computes new group elements.

3

- All algorithms are modeled as algebraic, i.e., also adversaries in security experiments.
- This gives strictly weaker model assumptions than GGM
- The above is derived from Lemma where every generic algorithm is also an algebraic algorithm.

If $true \xrightarrow{\text{GGM}} S$ (lower bound for S in the GGM), and $S \xrightarrow{\text{AGM}} T$, then $true \xrightarrow{\text{GGM}} T$, if reduction in AGM is a generic algorithm.

- GGM: Lower bounds for algorithms via combinatorial arguments.
- AGM: Reduction based proofs.

• DLP
$$\xrightarrow{\text{AGM}}$$
 CDH assumption

- DLP $\xrightarrow{\text{AGM}}$ SDH assumption
- DLP $\xrightarrow{\text{AGM}}$ LRSW assumption
- DDH \implies ElGamal CCA1
- DLP $\xrightarrow{\text{AGM}}$ Groth's ZK-SNARK
- DLP $\xrightarrow{\text{AGM}}$ BLS signature scheme

- $\bullet~{\rm CDH}:$ Given g,g^x,g^y , compute g^{xy}
- DLP: Given g^u , compute u.
- Proof that DLP AGM CDH assumption (breaking CDH algebraically is as hard as solving DLP).

- Challenger $U = g^u$ wants to compute u
- Adversary sovles the CDH Problem
- Challenger sends g, g^x, g^y
- Adversary responds with $g^{xy}, z=(a,b,c).$ However, from definition of Algebraic Algorithms: $g^{xy}=(g^x)^a(g^y)^bg^c$. That happens because $L=(L_1,...,L_t)=(g,g^x,g^y)$ and $Z=g^{xy}$ with representation $z=(z_1,...,z_t)=(a,b,c)$

•
$$g^{xy} = (g^x)^a (g^y)^b g^c \xrightarrow{x} y = xa + yb + c \pmod{p}$$
. We solve the above for $x \ (x = \frac{yb+c}{y-a})$ unless $y = a \pmod{p}$. Problem is resolved by randomly choosing $g^u = g^x$ or $g^u = g^y$. Problem is always solved with probability $\frac{1}{2}$

- [KZZ22] poses some potential issues on the AGM.
- They highlight that as the GGM and AGM are currently formalized, this is not true: hardness in the AGM may not imply hardness in the GGM, and a generic reduction in the AGM may not imply a similar reduction in the GGM.
- [KZZ22] focuses on the definition given to the algebraic algorithms by [FKL18] and states that in general algebraic algorithms depend on a specific encoding σ (An encoding $\sigma: Z_p \to \{0,1\}^{\ell}$ is simply an injective map from Z_p to $\{0,1\}^{\ell}$).
- [FKL18] poses no restriction on intermediate computations but require that any group elements output by an algorithm must be accompanied by a representation relative to the input ordered set.

- The AGM is useless for analyzing games where the algorithm's output is not a group element.
- Whenever the encoding is such that the discrete-logarithm problem can be solved efficiently relative to that encoding, any algorithm can be made algebraic by simply computing a representation of any group elements it outputs e.g.

• Once a particular encoding σ is fixed, it is not immediately well-defined what it means for an algorithm to "be provided with a group element as input" or to "output a group element." E.g a game where given input *i* it returns the i-th bit of $\sigma(x) \rightarrow$ no group element as input but can construct $\sigma(x)$ ([FKL18] tries to mitigate this by enforcing other elements to not depend on any group elements). Given two games G and H such that: (1) there is a Shoup-generic reduction from H to G; (2) H is hard for Shoup-generic algorithms; but (3) G is easy for Shoup-generic algorithms

• *H* is the *dlog* game:

• G is the beg game:

• There is a Shoup-generic algorithm A with for G (for each i, A sets $z'_i = 1$ iff $U_i = X$)

19/21

Counterexample Via *beg* Algorithm (continued)

- $\bullet\,$ Then there is a proof by reduction between $dlog, beg\,$
- Key point of that proof is that the generic algorithm A used cannot be converted to an Algebraic algorithm!

Proof is the following

Fix an encoding σ . Generic reduction R is given $(\mathbf{X}, \mathbf{Z}) := (\sigma(1), \overset{\circ}{\sigma}(z))$ as input along with oracle access to an algebraic algorithm A; it proceeds as follows:

- 1. Parse Z as the bitstring $z_1 \cdots z_\ell$. Set $z_0 := 1$.
- 2. Request $I = \sigma(0)$ from the labeling oracle.
- For i = 1,..., l do: if z_i = 0 then set U_i := I; else set U_i := X.
- Run A(X, U₁,..., U_ℓ) to obtain output Z' along with a representation (x₀, x₁, ..., x_ℓ) such that Z' = X^{x₀} · U^{x₁}_ℓ...U^{x_ℓ}_ℓ.
- 5. Output $\sum_{i=0}^{\ell} z_i \cdot x_i \mod p$.

We now analyze the behavior of R. Let A be an algebraic adversary with $\epsilon = \operatorname{Succ}^{h}_{\operatorname{beg}_{\sigma}}$. Observe that when A is run as a subroutine by R in game $\operatorname{dlog}_{\sigma}$, the input provided to A is distributed identically as in $\operatorname{beg}_{\sigma}$. Moreover, whenever A succeeds it holds that (1) $\mathbf{Z}' = \mathbf{Z}$ and (2) $z = \sum z_i \cdot x_i \mod p$. It follows that $\operatorname{Succ}^{\mathsf{R}h}_{\operatorname{cdg}} = \epsilon$. This completes the proof. \Box

- [KZZ22] construct a clever way to use Algebraic Algorithms and their definition so as to construct reduction proofs.
- On the other hand [KZZ22] state that this definition is not concrete and provide a counterexample.
- Both [FKL18] and [KZZ22] try to formalize their proofs using their systems and assumptions.
- Maybe there are other solutions like Zhandry's in [Zha22] where a new definition for AGM is provided.