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Overview

Presentation of the Generic Group Model (GGM) and the Standard
Model.
Presentation and brief analysis of the The algebraic group model and
its applications. proposed by Fuchsbauer, G., Kiltz, E., Loss, J.
(2018) ([FKL18]).
Beyond AGM and potential issues posed by Katz, J., Zhang, C.,
Zhou, H. S. (2022) in their paper: An analysis of the algebraic group
model ([KZZ22]).
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The Standard Model

Standard model is the model of computation in which the adversary is
only limited by the amount of time and computational power
available.
Schemes that can be proven secure using only complexity assumptions
(e.g. factorization) are said to be secure in the standard model.
Mathematical Abstractions: The standard model employs
mathematical abstractions and idealized assumptions to reason about
the security properties of cryptographic protocols.
Rigorous Proof Techniques: It enables rigorous proofs of security
properties by formulating precise definitions, security notions, and
reductions.
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The Generic Group Model (GGM)

GGM is an idealised cryptographic model, where the adversary is only
given access to a randomly chosen encoding of a group, instead of
efficient encodings, such as those used by the finite field or elliptic
curve groups used in practice.
GGM includes an oracle that executes the group operation.
GGM mainly used to analyse computational hardness assumptions.
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Idealized Models

Ideally proof in Standard Model (no simplifications)
Idealizing via abstraction -> prove in the simplified/idealized model

Example: ROM idealizes=====⇒ hash functions, GGM idealizes=====⇒ cyclic groups
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Generic Group Algorithms

Let 𝔾 = < 𝐺, ∘, 𝑔 >. 𝐴 is generic if it only computes over 𝔾 as follows:
Given 𝑎, 𝑏 ∈ 𝔾 compute 𝑐 = 𝑎 ∘ 𝑏.
Given 𝑎, 𝑏 ∈ 𝔾 check whether 𝑎 = 𝑏.
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Generic Group Algorithms: Pros

Work in every cyclic group.
Information theoretic lower bounds (DLP, CDH, DDH, etc).
Fitting abstraction for (some) elliptic curves.

Thomas Souliotis (NTUA) The Algebraic Group Model June 8, 2023 7 / 21



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Generic Group Algorithms: Cons

Representaton-based exploits (e.g. Jacobi symbols, index
calculus-based attacks, etc).
Deriving lower bounds is a difficult process (combinatorial arguments).
Lower bounds are not modular -> new boundaries for a new
cryptographic protocol.
Many algorithms of practical interest are not generic.
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Introduction to the Algebraic Group Model

Weaker model assumptions than GGM.
𝐺𝐺𝑀 ≤ 𝐴𝐺𝑀 ≤ Standard Model.
Reduction based and easy to work with (allows easy proofs).
Improved abstraction of reality over GGM.
Results from AGM carry over to GGM.
Captures a broad spectrum of important algorithms.

Thomas Souliotis (NTUA) The Algebraic Group Model June 8, 2023 9 / 21



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algebraic Algorithms

An algorithm 𝐴𝐴𝐿𝐺 is algebraic if it fulfills the following:
Given a list of all group elements 𝐿 = (𝐿1, ..., 𝐿𝑡) given to 𝐴𝐴𝐿𝐺
during its execution
Whenever 𝐴𝐴𝐿𝐺 outputs a group element 𝑍 ∈ 𝔾, it also outputs a
representation 𝑧 = (𝑧1, ..., 𝑧𝑡) s.t. 𝑍 = ∏𝑖 𝐿𝑧𝑖

𝑖
Basically an Algebraic Algorithm always tells us how it computes new
group elements.
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AGM in a Nutshell

All algorithms are modeled as algebraic, i.e., also adversaries in
security experiments.
This gives strictly weaker model assumptions than GGM
The above is derived from Lemma where every generic algorithm is
also an algebraic algorithm.
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AGM: Composistion Theorem

If 𝑡𝑟𝑢𝑒 GGM===⇒ 𝑆 (lower bound for 𝑆 in the GGM), and 𝑆 AGM===⇒ 𝑇 , then

𝑡𝑟𝑢𝑒 GGM===⇒ 𝑇 , if reduction in AGM is a generic algorithm.
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AGM vs GGM proofs

GGM: Lower bounds for algorithms via combinatorial arguments.
AGM: Reduction based proofs.

Thomas Souliotis (NTUA) The Algebraic Group Model June 8, 2023 13 / 21



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Reductions in the AGM

DLP AGM===⇒ CDH assumption

DLP AGM===⇒ SDH assumption

DLP AGM===⇒ LRSW assumption

DDH AGM===⇒ ElGamal CCA1

DLP AGM===⇒ Groth’s ZK-SNARK

DLP AGM===⇒ BLS signature scheme
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AGM Reduction: Example

CDH: Given 𝑔, 𝑔𝑥, 𝑔𝑦, compute 𝑔𝑥𝑦

DLP: Given 𝑔𝑢, compute 𝑢.

Proof that DLP AGM===⇒ CDH assumption (breaking CDH algebraically
is as hard as solving DLP).
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AGM Reduction: Example

Challenger 𝑈 = 𝑔𝑢 wants to compute 𝑢
Adversary sovles the CDH Problem
Challenger sends 𝑔, 𝑔𝑥, 𝑔𝑦

Adversary responds with 𝑔𝑥𝑦, 𝑧 = (𝑎, 𝑏, 𝑐). However, from definition
of Algebraic Algorithms: 𝑔𝑥𝑦 = (𝑔𝑥)𝑎(𝑔𝑦)𝑏𝑔𝑐 . That happens because
𝐿 = (𝐿1, ..., 𝐿𝑡) = (𝑔, 𝑔𝑥, 𝑔𝑦) and 𝑍 = 𝑔𝑥𝑦 with representation
𝑧 = (𝑧1, ..., 𝑧𝑡) = (𝑎, 𝑏, 𝑐)
𝑔𝑥𝑦 = (𝑔𝑥)𝑎(𝑔𝑦)𝑏𝑔𝑐 𝑥=⇒ 𝑦 = 𝑥𝑎 + 𝑦𝑏 + 𝑐 (𝑚𝑜𝑑𝑝). We solve the above
for 𝑥 (𝑥 = 𝑦𝑏+𝑐

𝑦−𝑎 ) unless 𝑦 = 𝑎 (𝑚𝑜𝑑𝑝). Problem is resolved by
randomly choosing 𝑔𝑢 = 𝑔𝑥 or 𝑔𝑢 = 𝑔𝑦. Problem is always solved
with probability 1

2
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AGM Problems

[KZZ22] poses some potential issues on the AGM.
They highlight that as the GGM and AGM are currently formalized,
this is not true: hardness in the AGM may not imply hardness in the
GGM, and a generic reduction in the AGM may not imply a similar
reduction in the GGM.
[KZZ22] focuses on the definition given to the algebraic algorithms
by [FKL18] and states that in general algebraic algorithms depend on
a specific encoding 𝜎 (An encoding 𝜎 ∶ 𝑍𝑝 → {0, 1}ℓ is simply an
injective map from 𝑍𝑝 to {0, 1}ℓ).
[FKL18] poses no restriction on intermediate computations but
require that any group elements output by an algorithm must be
accompanied by a representation relative to the input ordered set.
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AGM Problems (continued)

The AGM is useless for analyzing games where the algorithm’s output
is not a group element.
Whenever the encoding is such that the discrete-logarithm problem
can be solved efficiently relative to that encoding, any algorithm can
be made algebraic by simply computing a representation of any group
elements it outputs e.g.

1 𝑟1, 𝑟2 ←− 𝑍𝑝
2 𝑠 ←− 𝑟1𝑟2 𝑚𝑜𝑑 𝑝
3 Output (𝑠, 𝑠)

Once a particular encoding 𝜎 is fixed, it is not immediately
well-defined what it means for an algorithm to “be provided with a
group element as input” or to “output a group element.” E.g a game
where given input 𝑖 it returns the i-th bit of 𝜎(𝑥) -> no group element
as input but can construct 𝜎(𝑥) ([FKL18] tries to mitigate this by
enforcing other elements to not depend on any group elements).
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Counterexample Via 𝑏𝑒𝑔 Algorithm

Given two games 𝐺 and 𝐻 such that: (1) there is a Shoup-generic
reduction from 𝐻 to 𝐺; (2) 𝐻 is hard for Shoup-generic algorithms; but
(3) 𝐺 is easy for Shoup-generic algorithms

𝐻 is the 𝑑𝑙𝑜𝑔 game:
1 𝑧 ←− 𝑍𝑝
2 𝑧′ ←− 𝐴(𝜎(1), 𝜎(𝑧))
3 Return 1 iff 𝑧′ = 𝑧

𝐺 is the 𝑏𝑒𝑔 game:
1 𝑧 ←− 𝑍𝑝
2 parse 𝑍 = 𝜎(𝑧) as the bitstring 𝑧1...𝑧𝑙
3 (𝑋, 𝑈1, ..., 𝑈𝑙) = (𝜎(1), 𝜎(𝑧1), ..., 𝜎(𝑧𝑙))
4 𝑍′ ←− 𝐴(𝑋, 𝑈1, ..., 𝑈𝑙)
5 Return 1 iff (𝑍′ = 𝑍)

There is a Shoup-generic algorithm 𝐴 with for 𝐺 (for each 𝑖, 𝐴 sets
𝑧′

𝑖 = 1 iff 𝑈𝑖 = 𝑋)
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Counterexample Via 𝑏𝑒𝑔 Algorithm (continued)

Then there is a proof by reduction between 𝑑𝑙𝑜𝑔, 𝑏𝑒𝑔
Key point of that proof is that the generic algorithm 𝐴 used cannot
be converted to an Algebraic algorithm!
Proof is the following
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Conclusion

[KZZ22] construct a clever way to use Algebraic Algorithms and their
definition so as to construct reduction proofs.
On the other hand [KZZ22] state that this definition is not concrete
and provide a counterexample.
Both [FKL18] and [KZZ22] try to formalize their proofs using their
systems and assumptions.
Maybe there are other solutions like Zhandry’s in [Zha22] where a
new definition for AGM is provided.
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