
Order-Fairness for Byzantine Consensus

Order-Fairness for Byzantine Consensus

Mahima Kelkar, Fan Zhang, Steven Goldfeder, Ari Juels

June 8, 2023



Order-Fairness for Byzantine Consensus

Introduction

In any consensus (or State Machine Replication) protocol, the
following two properties must be satisfied:

Consistency:all honest nodes must have the same view of the
agreed upon log

Liveness: messages submitted by users are added to the log
within a reasonable amount of time

The novel idea that Kelkar et al formulated in this paper is a
property called transaction order fairness: if a (sufficiently) large
number of nodes receive a transaction tx1 before another one tx2,
then this should be reflected in the final ordering agreed upon by
all nodes.



Order-Fairness for Byzantine Consensus

Introduction

In any consensus (or State Machine Replication) protocol, the
following two properties must be satisfied:

Consistency:all honest nodes must have the same view of the
agreed upon log

Liveness: messages submitted by users are added to the log
within a reasonable amount of time

The novel idea that Kelkar et al formulated in this paper is a
property called transaction order fairness: if a (sufficiently) large
number of nodes receive a transaction tx1 before another one tx2,
then this should be reflected in the final ordering agreed upon by
all nodes.



Order-Fairness for Byzantine Consensus

Importance of fair transaction ordering

To deter attacks based on the manipulation of the order in which
transactions are included in each block. Namely as front running
and sandwich attacks. For example in the Ethereum network,
such practices are commonplace and have cost its users millions of
dollars.



Order-Fairness for Byzantine Consensus

Our Model

We assume the following for our Model:

Permissioned setting: the number of consensus nodes n
(validators) and their identities is known and fixed. The users
can be arbitrarily many.

Byzantine Adversary: a type of active adversary that can
deviate from the prescribed protocol, send conflicting
messages to different nodes, or delay any message from a
node they control.

Synchronization: Kelkar et al designed protocols in both
synchronous and asynchronous settings.

Synchronous: there is a well-defined and known upper bound
on message delivery time.
Asynchronous: there are no assumptions made about timing
bounds.



Order-Fairness for Byzantine Consensus

Our Model

We assume the following for our Model:

Permissioned setting: the number of consensus nodes n
(validators) and their identities is known and fixed. The users
can be arbitrarily many.

Byzantine Adversary: a type of active adversary that can
deviate from the prescribed protocol, send conflicting
messages to different nodes, or delay any message from a
node they control.

Synchronization: Kelkar et al designed protocols in both
synchronous and asynchronous settings.

Synchronous: there is a well-defined and known upper bound
on message delivery time.
Asynchronous: there are no assumptions made about timing
bounds.



Order-Fairness for Byzantine Consensus

Defining Fair Ordering

How do we go about defining the desired property?

Definition

Send-order-fairness: if tx1 was sent by a user before tx2, then it
will have to appear this way in the log.

To achieve this, we need the following two strong assumptions:

1 A trusted way to timestamp a transaction at the user side, so
a node can not delay the relay of a transaction.

2 Network synchrony is also required to ensure that a
transaction is not arbitrarily delayed (by offline nodes or by
the Adversary).

The above assumptions are quite strong, so a different approach
has to be made.



Order-Fairness for Byzantine Consensus

Defining Fair Ordering

How do we go about defining the desired property?

Definition

Send-order-fairness: if tx1 was sent by a user before tx2, then it
will have to appear this way in the log.

To achieve this, we need the following two strong assumptions:

1 A trusted way to timestamp a transaction at the user side, so
a node can not delay the relay of a transaction.

2 Network synchrony is also required to ensure that a
transaction is not arbitrarily delayed (by offline nodes or by
the Adversary).

The above assumptions are quite strong, so a different approach
has to be made.



Order-Fairness for Byzantine Consensus

Defining Fair Ordering

Definition

Receive-order-fairness: If sufficiently many (at least γ-fraction)
nodes receive a transaction tx1 before another transaction tx2,
then all honest nodes must output tx1 before tx2, where

1
2 < γ ≤ 1

is the order fairness parameter of the protocol.

Impossibility result:Receive-order-fairness is impossible to be
achieved, unless we assume:

γ = 1.

Non-corrupting (passive) Adversary.

External synchrony assumption (i.e.instant synchronous
external network).



Order-Fairness for Byzantine Consensus

Defining Fair Ordering

Definition

Receive-order-fairness: If sufficiently many (at least γ-fraction)
nodes receive a transaction tx1 before another transaction tx2,
then all honest nodes must output tx1 before tx2, where

1
2 < γ ≤ 1

is the order fairness parameter of the protocol.

Impossibility result:Receive-order-fairness is impossible to be
achieved, unless we assume:

γ = 1.

Non-corrupting (passive) Adversary.

External synchrony assumption (i.e.instant synchronous
external network).



Order-Fairness for Byzantine Consensus

Condorcet Paradox

Consider the following case for 3 nodes A, B, C:

Node A receives tx1 < tx2 < tx3

Node B receives tx2 < tx3 < tx1

Node C receives tx3 < tx1 < tx2

No protocol can satisfy this property for γ ≤ 2
3 , since such a

protocol would have to include tx1 before tx2, tx2 before tx3, and
tx3 before tx1 in its final log.
We can extent the above for γ ≤ n−1

n , without any Adversarial
presence.
For γ = 1, the Adversary has to corrupt a single node in order to
prevent this property.



Order-Fairness for Byzantine Consensus

Condorcet Paradox

Consider the following case for 3 nodes A, B, C:

Node A receives tx1 < tx2 < tx3

Node B receives tx2 < tx3 < tx1

Node C receives tx3 < tx1 < tx2

No protocol can satisfy this property for γ ≤ 2
3 , since such a

protocol would have to include tx1 before tx2, tx2 before tx3, and
tx3 before tx1 in its final log.

We can extent the above for γ ≤ n−1
n , without any Adversarial

presence.
For γ = 1, the Adversary has to corrupt a single node in order to
prevent this property.



Order-Fairness for Byzantine Consensus

Condorcet Paradox

Consider the following case for 3 nodes A, B, C:

Node A receives tx1 < tx2 < tx3

Node B receives tx2 < tx3 < tx1

Node C receives tx3 < tx1 < tx2

No protocol can satisfy this property for γ ≤ 2
3 , since such a

protocol would have to include tx1 before tx2, tx2 before tx3, and
tx3 before tx1 in its final log.
We can extent the above for γ ≤ n−1

n , without any Adversarial
presence.

For γ = 1, the Adversary has to corrupt a single node in order to
prevent this property.



Order-Fairness for Byzantine Consensus

Condorcet Paradox

Consider the following case for 3 nodes A, B, C:

Node A receives tx1 < tx2 < tx3

Node B receives tx2 < tx3 < tx1

Node C receives tx3 < tx1 < tx2

No protocol can satisfy this property for γ ≤ 2
3 , since such a

protocol would have to include tx1 before tx2, tx2 before tx3, and
tx3 before tx1 in its final log.
We can extent the above for γ ≤ n−1

n , without any Adversarial
presence.
For γ = 1, the Adversary has to corrupt a single node in order to
prevent this property.



Order-Fairness for Byzantine Consensus

Block-order-fairness

Definition

Block-order-fairness: If sufficiently many (at least γ-fraction)
nodes receive a transaction tx1 before another transaction tx2,
then no honest node can deliver tx1 in a block after tx2.

This relaxation allows us to evade the Condorcet paradox by a
simple trick: placing paradoxical orderings into the same block.

The Aequitas protocol designed by Kelkar et al achieves this
property. The remaining part of the presentation will be dedicated
to describing the Aequitas protocol in the leader-based,
synchronous setting.



Order-Fairness for Byzantine Consensus

Block-order-fairness

Definition

Block-order-fairness: If sufficiently many (at least γ-fraction)
nodes receive a transaction tx1 before another transaction tx2,
then no honest node can deliver tx1 in a block after tx2.

This relaxation allows us to evade the Condorcet paradox by a
simple trick: placing paradoxical orderings into the same block.
The Aequitas protocol designed by Kelkar et al achieves this
property. The remaining part of the presentation will be dedicated
to describing the Aequitas protocol in the leader-based,
synchronous setting.



Order-Fairness for Byzantine Consensus

Aequitas: an overview

The Aequitas protocols follow a three-step process. Every
transaction tx , undergoes three stages:

1 Gossip Stage: Nodes gossip transactions in the order it
received them. Thus, each node gossips its local transaction
ordering.

2 Agreement Stage: Nodes agree on the set of nodes whose
local orderings should be considered for deciding on the global
ordering of a particular transaction.

3 Finalization Stage: Nodes finalize the global ordering of a
transaction using the set of local orderings decided on in the
agreement stage.



Order-Fairness for Byzantine Consensus

FIFO Broadcast

Definition

A FIFO-BC protocol satisfies liveness, agreement and FIFO-order if
the following properties hold with overwhelming probability:

1 (Twarmup,Tconfirm)-Liveness: If the sender is honest and
receives m in round r > Twarmup, or if an honest node delivers
m in round r > Twarmup then all honest nodes will have
delivered m by round r + Tconfirm. .

2 Agreement: If an honest node delivers m before m’, then no
honest node delivers m’ unless it has already delivered m.

3 FIFO-Order: If the sender is honest and is input a message m
before m’, then no honest node delivers m’ unless it has
already delivered m.



Order-Fairness for Byzantine Consensus

FIFO Broadcast

Remarks:

When composing several FIFO broadcast primitives together
with different senders, FIFO order is maintained for each
individual sender but different honest nodes may deliver
messages from different senders in different orders.

FIFO broadcast can be achieved using reliable broadcast:
sequence numbers are added to the messages broadcast by the
sender in a reliable broadcast protocol. An honest node does
not deliver a message with sequence number k until it has
delivered a message with sequence number k-1.



Order-Fairness for Byzantine Consensus

Gossip Stage

Based FIFO-BC. FIFO-BC guarantees that broadcasts by an honest
node are delivered by other honest nodes in the same order that
they were received.
Let Log j

i be node i’s view of the order in which node j received
transactions, according to how node j gossiped them.If node j is
malicious, Log j

i may arbitrarily differ from the actual order in
which j received transactions, but FIFO-BC prevents j from
equivocating, i.e., any two honest nodes i and k will have
consistent Log j

i and Log j
k .



Order-Fairness for Byzantine Consensus

Aequitas

1 Gossip Stage: Nodes gossip transactions in the order it
received them. Thus, each node gossips its local transaction
ordering. Achieved by using FIFO Broadcast.

2 Agreement Stage: Nodes agree on the set of nodes whose
local orderings should be considered for deciding on the global
ordering of a particular transaction.

3 Finalization Stage: Nodes finalize the global ordering of a
transaction using the set of local orderings decided on in the
agreement stage.



Order-Fairness for Byzantine Consensus

Set Byzantine Agreement

Definition

A set-BA protocol satisfies agreement, inclusion validity and
exclusion validity, if the following properties hold with
overwhelming probability:

1 Agreement: If two honest nodes i and j output set Oi and
Oj ⇒ Oi = Oj

2 Inclusion Validity: If an element is in the input sets of all
nodes, then it will also be in the output sets of all honest
nodes. ∀i ∈ P : c ∈ Ui ⇒ c ∈ Oj for all honest j.

3 If an element is not in any input set, then it is not in any
honest output set. ∀i ∈ P : c ̸∈ Ui ⇒ c ̸∈ Oj for all honest j.



Order-Fairness for Byzantine Consensus

Set Byzantine Agreement

Remarks:

Set-Ba can be realized by BBA (Binary Byzantine Agreement)
protocol:

∀i ∈ P∀c ∈ Ui :
∏

BBA(c)
Collect the outputs for all accepting instances in the set
O = {c |

∏
BBA(c) = 1}.

Set-BA inherits validity and liveness for BBA.



Order-Fairness for Byzantine Consensus

Agreement Stage

At the end of the gossip stage for a transaction tx , a node i ends
up with a set of other nodes Utx

i , that included tx in their local
ordering. Hence, tx ∈ Logk

i ⇒ k ∈ Utx
i

Nodes now perform Set-BA to agree on a set Ltx , to agree on the
final set of transactions that every honest node has heard.



Order-Fairness for Byzantine Consensus

Aequitas

1 Gossip Stage: Nodes gossip transactions in the order it
received them. Thus, each node gossips its local transaction
ordering. Achieved by using FIFO Broadcast.

2 Agreement Stage: Nodes agree on the set of nodes whose
local orderings should be considered for deciding on the global
ordering of a particular transaction. Achieved by using
Set-BA.

3 Finalization Stage: Nodes finalize the global ordering of a
transaction using the set of local orderings decided on in the
agreement stage.



Order-Fairness for Byzantine Consensus

Waiting Graph

A node i maintains a directed graph Gi , where vertices
represent transactions and an edge from a to b denotes that b
is waiting for a to be delivered. Gi is the “waiting graph”
maintained by node i.

Since nodes are building this graph on the same “data” (the
set of local logs agreed upon in the agreement phase), nodes
will have consistent graphs. That is, if an edge (a, b) exists in
Gi , then it will also (eventually) exist in Gj , if i and j are both
honest.

”Paradoxical” transactions will cause circles in Gi .

The condensation graph, collapses the strongly connected
components in Gi into the same vertex. Each vertex now
represents a set of transactions, that will be in the same
block. Since the condensation graph is acyclic, a total
ordering can be extracted.



Order-Fairness for Byzantine Consensus

Waiting Graph

A node i maintains a directed graph Gi , where vertices
represent transactions and an edge from a to b denotes that b
is waiting for a to be delivered. Gi is the “waiting graph”
maintained by node i.

Since nodes are building this graph on the same “data” (the
set of local logs agreed upon in the agreement phase), nodes
will have consistent graphs. That is, if an edge (a, b) exists in
Gi , then it will also (eventually) exist in Gj , if i and j are both
honest.

”Paradoxical” transactions will cause circles in Gi .

The condensation graph, collapses the strongly connected
components in Gi into the same vertex. Each vertex now
represents a set of transactions, that will be in the same
block. Since the condensation graph is acyclic, a total
ordering can be extracted.



Order-Fairness for Byzantine Consensus

Waiting Graph

A node i maintains a directed graph Gi , where vertices
represent transactions and an edge from a to b denotes that b
is waiting for a to be delivered. Gi is the “waiting graph”
maintained by node i.

Since nodes are building this graph on the same “data” (the
set of local logs agreed upon in the agreement phase), nodes
will have consistent graphs. That is, if an edge (a, b) exists in
Gi , then it will also (eventually) exist in Gj , if i and j are both
honest.

”Paradoxical” transactions will cause circles in Gi .

The condensation graph, collapses the strongly connected
components in Gi into the same vertex. Each vertex now
represents a set of transactions, that will be in the same
block. Since the condensation graph is acyclic, a total
ordering can be extracted.



Order-Fairness for Byzantine Consensus

Waiting Graph

A node i maintains a directed graph Gi , where vertices
represent transactions and an edge from a to b denotes that b
is waiting for a to be delivered. Gi is the “waiting graph”
maintained by node i.

Since nodes are building this graph on the same “data” (the
set of local logs agreed upon in the agreement phase), nodes
will have consistent graphs. That is, if an edge (a, b) exists in
Gi , then it will also (eventually) exist in Gj , if i and j are both
honest.

”Paradoxical” transactions will cause circles in Gi .

The condensation graph, collapses the strongly connected
components in Gi into the same vertex. Each vertex now
represents a set of transactions, that will be in the same
block. Since the condensation graph is acyclic, a total
ordering can be extracted.



Order-Fairness for Byzantine Consensus

Finalization Stage

Building the waiting graph:
Let l(tx ,tx ′) be the number of of logs where tx was ordered before
tx ′. If this is small. then tx should wait until tx ′ is finalized.

Hence, an edge tx , tx ′ is added in Gi if

ltx ,tx ′ ≤ |Ltx ∪ Ltx
′ | − γ · n + f

Finally the leader proposes a set of transactions. Each node i
validates the proposal if each transaction in the set belongs in the
same strongly connected component in each Gi .



Order-Fairness for Byzantine Consensus

Finalization Stage

Building the waiting graph:
Let l(tx ,tx ′) be the number of of logs where tx was ordered before
tx ′. If this is small. then tx should wait until tx ′ is finalized.
Hence, an edge tx , tx ′ is added in Gi if

ltx ,tx ′ ≤ |Ltx ∪ Ltx
′ | − γ · n + f

Finally the leader proposes a set of transactions. Each node i
validates the proposal if each transaction in the set belongs in the
same strongly connected component in each Gi .



Order-Fairness for Byzantine Consensus

Finalization Stage

Building the waiting graph:
Let l(tx ,tx ′) be the number of of logs where tx was ordered before
tx ′. If this is small. then tx should wait until tx ′ is finalized.
Hence, an edge tx , tx ′ is added in Gi if

ltx ,tx ′ ≤ |Ltx ∪ Ltx
′ | − γ · n + f

Finally the leader proposes a set of transactions. Each node i
validates the proposal if each transaction in the set belongs in the
same strongly connected component in each Gi .



Order-Fairness for Byzantine Consensus

Aequitas

1 Gossip Stage: Nodes gossip transactions in the order it
received them. Thus, each node gossips its local transaction
ordering. Achieved by using FIFO Broadcast.

2 Agreement Stage: Nodes agree on the set of nodes whose
local orderings should be considered for deciding on the global
ordering of a particular transaction. Achieved by using
Set-BA.

3 Finalization Stage: Nodes finalize the global ordering of a
transaction using the set of local orderings decided on in the
agreement stage. Achieved by using the Waiting Graph.



Order-Fairness for Byzantine Consensus

Overall Results

The Aequitas protocol only rely on reliable broadcast and
Byzantine agreement, both of which can be realized by any
existing consensus protocol. Hence, any existing protocol can be
extended achieve block order fairness.


