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In this work...

We will see Dory,

a transparent setup,

public coin,

interactive argument,

for inner-pairing products between commited vectors of elements of
two source groups
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In this work...

For a product of vectors of length n:

Proofs are:

6 log n target group elements and
O(1) additional elements.

Verifier work is dominated by:

O(log n) multiexponentiation in the target group and
O(1) pairings

Security is reduced to the standard SXDH assumption in the
standard model.
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In this work...

Apply Dory to build a multivariate polynomial commitment scheme
via the Fiat-Shamir transform.
For a dense polynomial with n coefficients

Prover work to compute a commitment is donimated by a
multiexponentiation in one source group of size n

Prover work to show that a commitment to an evaluation is
correct is:

O(nlog 8/ log 25) in general
O(n1/2) for univariate or multilinear polynomials

Communication Complexity: O(log(n))

Verifier work: O(log(n))
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In this work...

These arguments can be batched!

to validate ` polynomial evaluations for polynomials of size at most n

O(`+ log n) exponentiations

O(` log n) field operations
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In this work...

Dory is inspired by ”Efficient zero-knowledge arguments for arithmetic
circuits in the discrete log setting” of Bootle et al. but applies new
techniques to achieve logarithmic verifier complexity . It can be applied to:

give polynomial commitments for arbitraty number of variables

matrix commitment strategy

give commitment to univariate and bivariate polynomials
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Operations for transparent polynomial commitment
schemes

1. P and V generate public parameters

2. P must commit to a polynomial and transmit that commitment to V

3,4. P and V must compute, transmit and verify a proof of evaluation og
the polynomial
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Comparison of Polynomial Commitment Schemes
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Key idea of LCC-DLOG techniques

For any vectors −→u L,
−→u R ,

−→v L,
−→v R and any non-zero scalar α

〈−→u ,−→v 〉 = 〈−→u L||−→u R ,
−→v L||−→v R〉 =

= 〈α−→u L +−→u R , α
−1−→v L +−→v R〉 − α〈−→u L,

−→v R〉 − α−1〈−→u R ,
−→v L〉

Hence a claim about the inner product 〈−→u ,−→v 〉 of length n can be
reduced to some claims about the inner products of vectors of length
n/2

This procedure is applied recursively to obtain a claim about vectors
of length 1.
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Core techniques of Dory

The key ideas of Dory are

Symmetry of messages and commitment keys

AFGHO structure preserving commitments have symmetry between
messages and the commitment key.
For some pairing group (G1,G2,GT ) if the message is a vector in G1

then commitment key is a vector in G2 (and vice versa) and the
commitment is in GT

Commitment key and all Verifier challenges are public so we can outsource
computation on the commitment key to the Prover

Structured Verifier computation

Structured public scalars

Public parameters

Batching

Application to Polynomial commitments
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Core techniques of Dory

The key ideas of Dory are

Symmetry of messages and commitment keys
Structured Verifier computation

The computations of the Verifier are highly structured. Given the first
challenge α the verifier

must turn commitment key
−→
Γ = (

−→
Γ L||
−→
Γ R) into

−→
Γ′ = (f (α)

−→
Γ L + g(α)

−→
Γ R)

where f , g are cheap to compute

If the verifier holds structure preserving commitments to
−→
Γ L,
−→
Γ R they can

quicly compute a commitment to
−→
Γ′

Hence if we have structure preserving commitments to the commited key,
the Verifier can apply one or more challenges to shrink the commited
key and have the Prover do the linear work of computing the inner
product.

Structured public scalars
Public parameters
Batching
Application to Polynomial commitments
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Core techniques of Dory

The key ideas of Dory are

Symmetry of messages and commitment keys

Structured Verifier computation

Structured public scalars

For polynomial commitments the polynomial size vector of scalars has
multiplicative structure, as it is the evaluation of monomials for fixed
values of variables.
Inner products of vectors of this form can be computed in only
logarithmically many operations.

Public parameters

Batching

Application to Polynomial commitments
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Core techniques of Dory

The key ideas of Dory are

Symmetry of messages and commitment keys

Structured Verifier computation

Structured public scalars

Public parameters

Dory public parameters contain commitment keys for every power of 2
length less than n in both G1,G2 and commitments to the left and right
halves of each commitment key.
In this way the online proof generation and verification is accelerated, as
pp are computed once during setup with linear-size computation.

Batching

Application to Polynomial commitments
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Core techniques of Dory

The key ideas of Dory are

Symmetry of messages and commitment keys

Structured Verifier computation

Structured public scalars

Public parameters

Batching

The arguments can be batched to reduce verification time further.
The cost of evaluating each additional polynomial commitment is:

O(1) group operations and

O(log n) additional operations in F

Application to Polynomial commitments
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Core techniques of Dory

The key ideas of Dory are

Symmetry of messages and commitment keys

Structured Verifier computation

Structured public scalars

Public parameters

Batching

Application to Polynomial commitments

Construct a polynomial commitment from a two-tiered homomorphic
commitment to matrices. Evaluation of dense univariate or multilinear
polynomials with n coefficients is reduced to two inner producs of size
O(n1/2)
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Notation

Use additive group notation

prime field F = Fp

3 groups of order p: G1,G2,GT

bilinear map e : (G1 ×G2 → GT )

generators G1 ∈ G1, G2 ∈ G2 such that e(G1,G2) generates GT

〈, 〉 denotes generalised inner products
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Computationally hard problems

SXDH assumption

(Fp,G1,G2,GT , e,G1,G2) satisfies the symmetric external
Diffie-Hellman assumption (SXDH) if the Decisional Diffie-Hellman
(DDH) assumption holds for (Fp,G1,G1) and (Fp,G2,G2)
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Succinct interactive arguments of knowledge

For an NP language L there is a deterministic polynomial time SatL s.t.

{∃w : SatL(x,w) = 1} ⇔ x ∈ L

Public-coin succinct interactive argument of knowledge:

Completeness

If x ∈ L for any witness w and r ∈ {0, 1}∗

Pr [〈P(pp,w),V(pp, r)〉(x) = 1|SatL(x,w) = 1] ≥ 1− negl(λ)

Soundness

Knowledge soundness

succinctness

public coin
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Succinct interactive arguments of knowledge

For an NP language L there is a deterministic polynomial time SatL s.t.

{∃w : SatL(x,w) = 1} ⇔ x ∈ L

Public-coin succinct interactive argument of knowledge:

Completeness

Soundness

For x /∈ L, any PPT P∗ and for all r ∈ {0, 1}∗

Pr [〈P∗(pp),V(pp, r)〉(x) = 1] ≤ negl(λ)

Knowledge soundness

succinctness

public coin
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Succinct interactive arguments of knowledge

For an NP language L there is a deterministic polynomial time SatL s.t.

{∃w : SatL(x,w) = 1} ⇔ x ∈ L

Public-coin succinct interactive argument of knowledge:

Completeness

Soundness

Knowledge soundness

For any PPT adversary A, there exists a PPT extractor Ext such that
∀x ∈ L,∀r ∈ {0, 1}∗ if

Pr [〈A(pp),V(pp, r)〉(x) = 1] ≥ negl(λ)

then
Pr [SatL(x,ExtA(pp, x)) = 1] ≥ negl(λ)

succinctness

public coin
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Succinct interactive arguments of knowledge

For an NP language L there is a deterministic polynomial time SatL s.t.

{∃w : SatL(x,w) = 1} ⇔ x ∈ L

Public-coin succinct interactive argument of knowledge:

Completeness

Soundness

Knowledge soundness

succinctness

Communication between P and V is sublinear in |w |

public coin
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Succinct interactive arguments of knowledge

For an NP language L there is a deterministic polynomial time SatL s.t.

{∃w : SatL(x,w) = 1} ⇔ x ∈ L

Public-coin succinct interactive argument of knowledge:

Completeness

Soundness

Knowledge soundness

succinctness

public coin

Each V message M←$ C, for C for some fixed set.
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Honest-Verifier Statistical Zero-Knowledge

HVZK

An interactive argument (Gen,P,V) for L is Honest-Verifier Statistical
Zero-Knowledge (HVZK) if there exists a PPT algorithm Sim(x, z) called
the simulator, running in poly time in |x|, such that for every
x ∈ L,w ∈ Rx and z ∈ {0, 1}∗ the statistical distance between the
distributions

〈P(w),V(z)〉(x) Sim(x, z)

is negl(λ).
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Generalization of Special Soundness

For a 2µ+ 1 move interactive protocol a (w1, . . .wµ)-tree of accepting
transcripts is a tree of depth µ in which:

the root is labelled with x and the initial
prover message

each node at depth i has wi children
labelled with distinct V challenges and
subsequent P message

the concatenation of the labels on any
path from the root to a leaf of the tree
is an accepting transcript for the
protocol
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Generalization of Special Soundness

Tree extractability (arguments)

A (2µ+ 1) move interactive protocol (P,V) with Verifier message spave C
is (W , ε) extractable if:

∃ a PPT algorithm extracting a witness from (w1, ...,wµ)-tree of
accepting trancripts

with failure probability ≤ ε,
∏µ

i=1 wi ≤W and maxi (wi ) ≤ ε|C|

Tree extractability (reductions)

An interactive protocol reducing x ∈ L to x ′ ∈ L′ is tree extractable if

the composition of this argument with a final Prover message
revealing a witness w ′ for x ′ ∈ L′ is a (W , ε) tree extractable
argument for L
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Polynomial Commitments

Commitment Scheme

A commitment scheme for some space of messages X is a tuple of three
protocols (Gen,Commit,Open)

pp ← Gen(1λ): produces public parameters

(C,S)← Commit(pp; x): takes some x ∈ X ; produces a public
commitment C and a secret opening S.

b ← Open(pp; C, x ,S): verifies the opening of commitment C to
x ∈ X with the opening S and outputs b ∈ {0, 1}
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Pedersen and AFGHO commitments

For messages X = Fn the Pedersen commitment scheme is defined by:

Pedersen commitments

pp ← Gen(1λ) = (g ←$Gn
i , h←$Gi )

(C,S)← Commit(pp; x) = {r ← F; (〈x , g〉+ rh, r)}

Open(pp; C, x ,S) = (〈x , g〉+ r(h)
?
= C)

AFGHO commitments are structure preserving commitments to group
elements, where for X = Gn

i for i ∈ {1, 2} we have that:

AFGHO commitments

pp ← Gen(1λ) = (g ←$Gn
3−i ,H1←$G1,H2←$G2)

(C,S)← Commit(pp; x) = {r ← F; (〈x , g〉+ r · e(H1,H2), r)}

Open(pp, C, x ,S) = (〈x , g〉+ S · e(H1,H2)
?
= C)
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Properties of AFGHO commitments

AFGHO commitments

pp ← Gen(1λ) = (g ←$Gn
3−i ,H1←$G1,H2←$G2)

(C,S)← Commit(pp; x) = {r ←$F; (〈x , g〉+ r · e(H1,H2), r)}

Open(pp, C, x ,S) = (〈x , g〉+ S · e(H1,H2)
?
= C)

AFGHO commitments are:

hiding: since r · e(H1,H2) is uniformly random in GT

it is a commitment conditional on SXDH problem

AFGHO commitments are additively homomorphic
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Inner Product argument with a logarithmic Verifier

argument for inner products between vectors −→v 1 ∈ Gn
1,
−→v 2 ∈ Gn

2

commited with AFGHO commitments with generators
(Γ2, e(H1,H2)) ∈ Gn

2 ×GT and (Γ1, e(H1,H2)) ∈ Gn
1 ×GT

We define a language:

(C ,D1,D2) ∈ Ln,Γ1,Γ2,H1,H2 ⊂ G3
T ⇔

∃(−→v 1 ∈ Gn
1,
−→v 2 ∈ Gn

2, rc ∈ F, rD1 ∈ F, rD2 ∈ F) :

D1 = 〈−→v 1, Γ2〉+rD1 · e(H1,H2)

D2 = 〈Γ1,
−→v 2〉+rD2 · e(H1,H2)

C = 〈−→v 1,
−→v 2〉+rC · e(H1,H2)
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Scalar-Product

Interactive argument of knowledge for L1,Γ1,Γ2,H1,H2

Prove that the product of two elements v1 ∈ G1 and v2 ∈ G2 under
AFGHO commitments

Note that pairings are more expensive than multiplication in G1 or G2
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Scalar − ProductΓ1,Γ2,H1,H2
(C ,D1,D2)
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Dory-Reduce

Interactive Argument to reduce membership of L2m,Γ1,Γ2,H1,H2 to
membership of L2m−1,Γ′1,Γ

′
2,H1,H2

If we neglect zero-knowledge, we start with 3 claims about 2m length
vectors:

D1 = 〈−→v 1, Γ2〉 D2 = 〈Γ1,
−→v 2〉 C = 〈−→v 1,

−→v 2〉

fold each into claims about 2m−1 length vectors (−→v iα, Γ
′
i ), using a

challenge α from the Verifier:

D ′1 = 〈−→v 1α, Γ2α〉 D ′2 = 〈Γ1α,
−→v 2α〉 C ′ = 〈−→v 1α,

−→v 2α〉

Prover and Verifier would seperately compute commitments from α
and precomputed data:

∆1 = 〈−→v 1α, Γ
′
2〉 ∆2 = 〈Γ′1,

−→v 2α〉
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Dory − Reduce
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Dory-Innerproduct

Apply Dory-Reduce iteratively to shrink an inner-product to a product

and then apply Scalar-Product
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Dory-InnerproductΓ1,0,Γ2,0,H1,H2
(C ,D1,D2)
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Costs of Dory-Innerproduct for the Prover

Communication Complexity:

Prover: sends 6 elements of GT to verifier

Computational Complexity:

Prover:
For Dory-Reduce:

6 multi-pairings of size 2m−j−1

O(2m−j) operations in F
O(1) operations in GT

For Scalar-Product:

O(1) pairings and exponentiations in GT

Hence, the overall cost to the prover is dominated by multipairings of
size 6× 2m, O(m) group operations and O(2m) field arithmetic.
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Costs of Dory-Innerproduct for Verifier

Computational Complexity:

Verifier:
For Dory-Reduce:

10 exponentiations in GT

2 inversions and 2 multiplications in F
O(1) additional operations in GT

O(1) additions in F
For Scalar-Product:

1 pairing
7 exponentiations in GT

1 inversion and 5 multiplications in F
O(1) additional operations in GT and additions in F
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Dual Dory
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Dual Dory

Dual Dory is a:

(Linkable) ring signature scheme

with logarithmic signature size and

with logarithmic verifier

does not require trusted setup

Is based on Dory (discrete-log type assumptions + bilinear pairing)

Security is based on the SXDH assumption.
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Comparison
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Adding Linkability

Idea:

A signer can use DualRing to prove that they know a secret key ski
corresponding to one of the pk’s from a list

the tag is computed as tag = H ′(prfx)ski

signer produces a Pedersen commitment com = PskQr to their secret
key and use a tag proof based on standard Σ-protocols to show that
tag and com use same secret key

Use an idea from [Groth & Kohlweiss] to prove that they know how
to open exactly one of the commitments:

(
com

pk1
, . . . ,

com

pkn
)
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