
E-Voting Privacy - Decentralized voting

Panagiotis Grontas
04/05/2023

NTUA -Advanced topics in cryptography (2022-2023)

E-Voting Privacy - Decentralized voting 1 / 60

Privacy

Modelling Secrecy

Intuition
Nobody can learn the vote cast by a particular voter.

• Secrecy in voting differs from secrecy in messaging
• Ballot privacy is not absolute
• The result leaks information

• In a unanimous vote, everyone knows how everyone voted
• In an all-but-one vote, the one that differs knows how everyone
else voted

• The result also yields a probability of a particular vote
• Important for small voting populations

E-Voting Privacy - Decentralized voting Privacy 2 / 60

Game-based definitions for ballot secrecy

Threat model: A corrupts voters. TA is honest!

Intuition: Indistinguishability games for cryptographic secrecy

Instead of distinguishing between message encryptions, A tries to
distinguish between different voting scenarios.

Workflow:

• C setups the protocol and begins with an empty BB
• A corrupts voters and casts ballots on their behalf
• For an honest voter, A selects 2 choices and hands them to C
• C flips a coin and selects one of the choices
• C creates and casts the respective ballot
• A casts more corrupted ballots
• The A must guess the coin

This must be combined with verifiability and apply to all possible
voting rules (i.e. result functions) - voting rules.

E-Voting Privacy - Decentralized voting Privacy 3 / 60

Impact of voting rules - A toy example [CS13]

Assume the majority result function and candidates {a, b}

The candidate with majority is declared the winner

In case of a tie: a is the winner.

There are two honest voters and one corrupt voter

In scenario 1: {(i0, a)(i1, a)} winner: a

In scenario 2: {(i0, a)(i1, b)} winner: a

A can distinguish the scenario by casting a a ballot for b

E-Voting Privacy - Decentralized voting Privacy 4 / 60

Lack of ballot independence can break ballot privacy [CS13] i

Ballot independence
A voter cannot repost an exact replica of another voter’s ballot in
the BB

Assume an election with 3 voters, where V1, V2 are honest and V3 is
corrupt.

b1 = (1, (R1, S1), πVote,1)

b2 = (2, (R2, S2), πVote,2)

The voter replays an exact replica of b1

b3 = (3, (R1, S1), πVote,1)

The candidate that receives more than 2 votes is the one preferred
by V1

E-Voting Privacy - Decentralized voting Privacy 5 / 60

Lack of ballot independence can break ballot privacy [CS13] ii

Alternative implementation: Use malleability and construct a
different ballot for the same vote

Countermeasures:

• Ballot weeding
• Strong Fiat-Shamir Heuristic to counter encryption malleability
Recall: Enc+ PoK provides non malleability

• Add voter id to the hash function

Despite being naive such attacks provide a sanity check for voting
systems

E-Voting Privacy - Decentralized voting Privacy 6 / 60

The BPRIV framework [BCG+15]

Goal
A private protocol does not leak any more information than what is
leaked from the tally.

Main idea
A: Tries to distinguish between two worlds by having access to:

• The ‘real’ BB that contains honest and adversarial ballots. The
adversary sees the real result.

• A ‘fake’ BB. The adversary sees the real results. Proofs of
correctness are simulated.

E-Voting Privacy - Decentralized voting Privacy 7 / 60

Overview of BPRIV

A has access to the following oracles:

• Board(b): Retrieve the contents of the BBb (Publish)
• Vote(v0, v1): Select two votes and post the corresponding
ballots to BB0,BB1 respectively - ballots are honestly created

• Cast(b): Cast a ballot to both BB - ballot is adversarially created
• Tally(b): Obtain the result of BB0. Yield real or simulated proofs

A can call the oracles Board,Vote,Cast at will

A can call Tally only once

A must guess which BB is presented

E-Voting Privacy - Decentralized voting Privacy 8 / 60

The BPRIV definition

Algorithm 1: BPRIVbA,VS

Input : security parameter λ
Output: {0, 1}

(pkTA, skTA)← VS.Setup(1λ)
CS← A()
b′ ← AVote,Cast,Tally,Board(pkTA)
return b = b′

BPRIV
A voting system VS supports ballot privacy if there exists a
simulator for S such that ∀PPTA:

| Pr
[
BPRIV0A,VS(λ) = 1

]
− Pr

[
BPRIV1A,VS(λ) = 1

]
|= negl(λ)

E-Voting Privacy - Decentralized voting Privacy 9 / 60

The BPRIV definition

Algorithm 2: Oracles for BPRIV definition
Oracle Vote(i, vt0, vt1)

b0 := Vote(i, vt0)

b1 := Vote(i, vt1)

if Valid(b0, BB0) AND Valid(b1, BB1) then
BB0 ⇐ b0
BB1 ⇐ b1

else
return⊥

Oracle Cast(i, b, b)
if Valid(b, BBb) then

BB0 ⇐ b
BB1 ⇐ b

else
return⊥

Oracle Tally(b)
if b = 0 then

(T, πT) := Tally(skTA, CS, BB0)

return (T, πT)
else

(T, πT) := Tally(skTA, CS, BB0)

π′
T := S(skTA, CS, BB0, BB1, T)

return (T, π′
T)

Oracle Board(b)
return Publish(BBb)

E-Voting Privacy - Decentralized voting Privacy 10 / 60

Helios is BPRIV i

Observation
The visible BB consists of tuples (i,b, ·) posted using Cast,Vote
If the tuple originates from Vote, the challenger can internally map
it to a tuple (i,b0,vt0,b1,vt1)

If the tuple originates from Cast, then it can be mapped to
(i,b,⊥,b,⊥)

Proof overview
A sequence of games beginning from BPRIV0 and ending to BPRIV1

with indistinguishable differences for A

E-Voting Privacy - Decentralized voting Privacy 11 / 60

Helios is BPRIV ii

Game0: BPRIV0 - A sees BB0 and the real result of the tally

Game1: The tally proof in BPRIV0 is simulated as
π′
T = Simulate(g,pk, R, Sg−t, c) where c←$ Zq .

Based on the ZK property of πT , A has a negligible advantage in
distinguishing between Game0,Game1.

{Game2,i}nHon
i=1

For all ballots cast using Vote (challenger entries (i,b0,vt0,b1,vt1))
replace b0i in BB0 with b1i from BB1.
A notices this with negligible probability due to the NM− CPA
property of Enc+ PoK.

Game2,nHon is BPRIV1

E-Voting Privacy - Decentralized voting Privacy 12 / 60

Helios is BPRIV iii

NM− CPA⇒ Game2,i ≡ Game2,i−1

Definition of NM− CPA from [BS]

E-Voting Privacy - Decentralized voting Privacy 13 / 60

Everlasting Privacy

Motivation

• Ballot secrecy is provided through encryption schemes
• Protection relies on computational hardness assumptions
• What if these assumptions are broken?

• Vote contents might be useful to a future oppressive government
• The need for verifiability makes election data publicly available
• But such a regime might also use insider information
• This threat might constitute an indirect coercion attempt

Everlasting Privacy [MN06]

E-Voting Privacy - Decentralized voting Everlasting Privacy 14 / 60

Approaches i

Perfectly hiding commitment schemes
• Ballot: Perfectly hiding commitment of vote
• For counting: openings are required
• How do voters post the openings?

• Encrypt the openings
• Secret sharing with the tallying authorities

Practical Everlasting Privacy: Everlasting privacy towards the public
[ACKR13]

External adversary has the same view with the voters

Excludes insiders

E-Voting Privacy - Decentralized voting Everlasting Privacy 15 / 60

Approaches ii

Anonymous casting (+ blind signatures) [FOO92]
• Disassociate identity with ballot
• Provide a blind signature to identified ballot to signal eligibility
• Identity is no longer required
• Blinded ballots cast anonymously

A further advantage: TA is not required to be trusted for privacy

E-Voting Privacy - Decentralized voting Everlasting Privacy 16 / 60

Applying Everlasting Privacy to Helios [DGA12] i

• Pedersen commitment Commit(m, r) = gmhr g, h←$ G

• Homomorphic:
Commit(m1, r1) · Commit(m2, r2) = Commit(m1 +m2, r1 + r2)

• Perfectly hiding - computationally binding

• Problem: ElGamal cannot be used for encrypting m, r

• Use a compatible cryptosystem (many approaches)

E-Voting Privacy - Decentralized voting Everlasting Privacy 17 / 60

Applying Everlasting Privacy to Helios [DGA12] ii

Vote(i,vti)

(bi, oki)← Commit(ck,vti)

[vti]← Enc(pkTA,vti)

[oki]← Enc(pkTA, oki)
BB⇐ bi

Send [vti], [oki] to TA

Tally(skTA)

b =

n∏
i=1

bi

[vt]= Enc(pkTA,
∑n

i=1 vti) =
∏n

i=1[vti]

vt = Dec(skTA, [vt])
[ok]= Enc(pkTA,

∑n
i=1 oki) =

∏n
i=1[oki]

ok = Dec(skTA, [ok])
if CS.Open(b,vt, ok) = 1 then
return vt
endif

E-Voting Privacy - Decentralized voting Everlasting Privacy 18 / 60

Helios Extensions for
receipt-freeness and
participation privacy

Intuition

Privacy does not deal with malicious voters, that willingly interact
with an attacker before/after voting to sell their votes

Assumption: A does not monitor voter during vote casting. Only at
distinct moments before / after.

Receipt-Freeness
A (malicious) voter cannot prove how she voted, even if she wants
to

Helios is not receipt-free
The malicious voter can reveal the randomness used in ballot
creation (encryption) A can recompute the encryption and check
the BB for the ballot

Revoting does not help. A can check which ballot finally appears in
the published BB.

E-Voting Privacy - Decentralized voting Helios Extensions for receipt-freeness and participation privacy 19 / 60

Interactive Solutions - [HS]

• The voter computes and signs the ballot (b, σ)
• The EA converts reencrypts (rerandomizes) b to b′

• The voter cannot longer prove how they voted
• The EA proves that b, b′ contain the same voter
• The proof must be non-transferrable
• Designated - Verifier (Reencryption) Proofs

• Includes the public key of the verifier
• The proof ascertains that:
• The statement is valid OR I know the private key of the verifier

• The voter signs b′

How to remove interactivity?

E-Voting Privacy - Decentralized voting Helios Extensions for receipt-freeness and participation privacy 20 / 60

Non-Interactive Solutions

BeleniosRF [CCFG16]
• Rerandomization Server.
• Changes the randomization
contained in the ballot.

• The voter is not alone in
contributing randomness.

• So the voter has no use in
revealing it.

• The signatures must adapt.
• Collusion of EA and
rerandomisation server could
change vote.

Helios-KTV [KTV15]
• Deniable vote updating
• The voter casts b1 (the selled
vote vt1)

• Later updates the ballot to b′
1

(a new vote vt′
1)

• Anonymization layer required
• Revoting might not be
allowed

• The adversarial ballot should
be cast first or the voter
should know which option
will be for sale

Both define receipt-freeness as an extension of BPRIV
E-Voting Privacy - Decentralized voting Helios Extensions for receipt-freeness and participation privacy 21 / 60

Signatures on Randomizable Ciphertexts i

• (dk,pk, vk, sk)← KGen(1λ)
• σ ← Sign(sk,m,pk)
• {0, 1} ← Verify(vk, σ,m)
• c← Enc(pk,m, vk)
• m← Dec(dk, c)
• (c′, σ′)← Random(pk, vk, c, r′, σ, s′)
• Vote(id,pk, vk,vt) = (c = Enc(pk,m, vk), Sign(sk, c,pk))
• Append(b) = Random(pk, vk,b)

Verifiability: Validate the signatures along with the proofs

E-Voting Privacy - Decentralized voting Helios Extensions for receipt-freeness and participation privacy 22 / 60

BPRIV for receipt-freeness i

A has additionally access to the following oracles:

• Register(i): Generate credentials for the voter
• Corrupt(i): Corrupt a voter for receipt-freeness (get the voter’s
key)

• Receipt(b0,b1): The corrupted voter casts two ballots to the
respective BB. They are assumed to encode information that will
allow vote selling (e.g. set last bit to one)

A must guess which BB is tallied

A ballot bb submitted through Receipt(b0,b1) can be swapped with
b1−b without A noticing

E-Voting Privacy - Decentralized voting Helios Extensions for receipt-freeness and participation privacy 23 / 60

BPRIV for receipt-freeness ii

Algorithm 3: BPRIV extensions
for BeleniosRF
Oracle Register(i)

(pki, ski)← Register(i)
VEl ⇐ (i, pki, ski)
return pki

Oracle Corrupt(i)
if i ∈ VEl then

VCorr ⇐ (i, pki, ski)
return (pki, ski)

Oracle Receipt(i,b0,b1)
if i ∈ VCorr then

if
Valid(b0,BB0)AND Valid(b1,BB1)
then
BB0 ⇐ b0
BB1 ⇐ b1

• A acts like a voter
• The ballot b0 can be replaced
with b1 (by the
rerandomization server)
without A noticing

• No strategy on behalf of the
voter needs to be applied

• More practical schemes
(single pass)

• Revoting is not always
allowed

• Helios is not receipt-free: A
can encode information in
BB0,BB1 (randomness) to
distinguish them

E-Voting Privacy - Decentralized voting Helios Extensions for receipt-freeness and participation privacy 24 / 60

Helios-KTV [KTV15] i

Participation privacy: The voter cannot prove if she voted or
abstained.

More serious attack for Internet voting due to larger scale

Basic idea: dummy ballots for all registered voters

• cast by a TTP - the posting trustee
• at random voting intervals during the voting phase
• contain a null vote
• many dummy ballots per voter - id
VoteDummy(i) = Vote(i,pk, ·, 0)

• before tallying: homomorphically aggregate all ballots per voter
id

• the end result contains the real vote of voter id

E-Voting Privacy - Decentralized voting Helios Extensions for receipt-freeness and participation privacy 25 / 60

Helios-KTV [KTV15] ii
For Receipt-Freeness: Deniable vote updating

• the A wants to cast a ballot bA = Vote(i,pk, ski,vtA)

• the voter obeys
• at a different time (earlier or later) the voter casts a different
ballot bv that updates to correspond to vote vtv

• DeniablyUpdate(i,vtv,vtA) = Vote(i,pk, ski,vtv − vtA)

• need to know previous vote

Assumptions

• available public key infrastructure for voter credentials
• anonymous channel
• A does not watch voter during the complete election
• trusted posting trustee, BB, TA

Extend BPRIV using two oracles
E-Voting Privacy - Decentralized voting Helios Extensions for receipt-freeness and participation privacy 26 / 60

Helios-KTV [KTV15] iii

Participation Privacy

Main idea: Vote swapping with abstention.

A cannot distinguish if Vi0 abstained and Vi1 voted at most k times
or vice versa by only viewing BBb
Algorithm 4: BPRIV extension for KTV-Helios (Participation Privacy)
Oracle VoteAbstainP(i0, i1,vt1, · · · ,vtk)

nb, n1−b ←$ P
{bib,i}

nb
i=1 ← VoteDummy(ib)

{bi1−b,i}
n1−b
i=1 ← VoteDummy(i1−b)

{bib,i ← Vote((ib, i0),pk, skib ,vti)}ki=1

{bib,i ← Vote((ib, i1),pk, skib ,vti)}ki=1

{BBb ⇐ bib,i}
k+nb
i=1

{BB1−b ⇐ bi1−b,i}
k+n1−b
i=1

E-Voting Privacy - Decentralized voting Helios Extensions for receipt-freeness and participation privacy 27 / 60

Helios-KTV [KTV15] iv

For b = 0 the voter sells her vote.
For b = 1 the voter tries to fool the coercer and executes
DeniablyUpdate

distinguishing factor - number of ballots in BB0,BB1 - obfuscation
using VoteDummy

Algorithm 5: BPRIV extensions for KTV-Helios
Oracle Receipt(i,vtA,vtv)

bA = Vote(i,pk, ski,vtA)

BB0 ⇐ bA

BB1 ⇐ bA

bv = DeniablyUpdate(i,vtv,vtA)

BB1 ⇐ bv

BB0 ⇐ VoteDummy(i)

E-Voting Privacy - Decentralized voting Helios Extensions for receipt-freeness and participation privacy 28 / 60

Coercion Resistance

A stronger adversary

Active methods for attack:

• Vote for a specific candidate / randomly
• Totally abstain from voting
• Yield private keys - allow to be simulated

Passive methods for attack:

• Monitor voting system throughout election
• Same for voter except for a moment of privacy

Goal: Internet voting

Note: Coercion Resistance⇒ Receipt-Freeness

E-Voting Privacy - Decentralized voting Coercion Resistance 29 / 60

The JCJ coercion resistance framework [JCJ05]

Intuition
A will not be motivated to attack, if he cannot check if the attack
succeeds

Techniques
• Multiple votes per voter
• Authentication using anonymous credentials

Registration phase: voter registers a real credential

During coercion attack: voter supplies a fake credential
(indistinguishable)

During moment of privacy: voter casts the real vote

During tallying: the TA must filter out fake and duplicate votes in a
verifiable manner without disclosing which votes are not counted

How: Blind comparisons in the backend against a voter roll
E-Voting Privacy - Decentralized voting Coercion Resistance 30 / 60

The scheme

A key component: PET (Encpk(m1), Encpk(m2)) = 1⇔ m1 = m2

E-Voting Privacy - Decentralized voting Coercion Resistance 31 / 60

Plaintext Equivalence Test

Algorithm 6: PET for ElGamal ciphertexts
Input : G, g, q, pki :

∏t
i pki = pk, c = (c1, c2), c′ = (c′1, c

′
2)

Private Input: ski ∈ Zq :
∑t

i ski = sk
Output : {0, 1}
cPET := c

c′ = (c1
c′1
, c2
c′2

)

zi ←$ Zq

ci,PET := c
zi
PET = (ci1, ci2) = ((c1

c′1
)zi , (c2

c′2
)zi)

πi1 ← NIZK
{
(G, g, q, pk, cPET , ci,PET), (zi) : ci,PET = c

zi
PET

}
Publish (ci,PET , πi1) and wait until all players have posted. Verify the proofs πi1
posted from other players
ϕ :=

∏t
i ci,PET = (

∏
i c1i,

∏
i c2i) = (c

∑
i zi

1i , c
∑

i zi
2i) = (x, y)

ψi := xski

πi2 ← NIZK
{
(G, g, q, pk, ψi), (ski) : ψi = xski

}
Publish (ψi, πi2) wait until all players have posted. Verify the proofs πi2 posted
from other players
ρ := y/

∏t
i ψi

return ρ = 1

Note: The strong Fiat-Shamir heuristic must be used If not verifiability can be broken

E-Voting Privacy - Decentralized voting Coercion Resistance 32 / 60

Assumptions

• Moment Of Privacy
• Untappable Registration (occurs one / used in multiple
elections)

• Secure transcript erasure
• Simulation of transcript

• Anonymous casting
• For forced abstention attack

• Coercer uncertainty about voter behavior
• If all vote, then the abstention attack will always succeed
• The voting authorities may inject chaffe votes on purpose

E-Voting Privacy - Decentralized voting Coercion Resistance 33 / 60

The model i

Algorithm 7: Real Coercion resistance game
(prms, VEl,CS)← Setup(1λ){
(ski, pki)← Register(skRA, i)

}n

i=1

VCorr,← A(corrupt) // Adversary corrupts voters
(j,vtj)← A(VHon, coerce) // Adversary coerces voter j
b←$ {0, 1}
if b = 0 then

sk∗j ← fakekey(j) // generate fake credential
bj ← Vote(j,vtj , skj) // Moment of privacy

else
sk∗j ← skj // yield credential

end{
bi ← Vote(i,vti, ski), }

|VHon|,D
i=1

BB⇐ Vote(j,vtj , sk∗j)
{
BB⇐ A(ski,vti, cast)

}|VCorr|
i=1

(T, πT,Γ) := Tally(BB, skTA)

b′ ← A(T, πT,Γ,BB, guess)
return b = b′

E-Voting Privacy - Decentralized voting Coercion Resistance 34 / 60

The model ii

Algorithm 8: Ideal Coercion resistance game
(prms, VEl,CS)← Setup(1λ){
(ski, pki)← Register(skRA, i)

}n

i=1

VCorr,← A(corrupt) // Adversary corrupts voters
(j,vtj)← A(VHon, coerce) // Adversary coerces voter j
b←$ {0, 1}
if b = 0 then

bj ← Vote(j,vtj , skj)
end
// Moment of privacy
sk∗j ← skj // always yield credential{
bi ← Vote(i,vti, ski), }

|VHon|,D
i=1

BB⇐ Vote(j,vtj , sk∗j){
BB⇐ A(ski,vti, cast)

}|VCorr|
i=1

T := ideal_tally(BB, skTA)

b′ ← A(T, guess)
return b = b′

E-Voting Privacy - Decentralized voting Coercion Resistance 35 / 60

The model iii

Why the ideal experiment?
• An alternative: Distinguish between b = 0 and b = 1?

• The tally might help the coercer distinguish if the coercion attempt succeeded

• For instance: The voter instruct a vote for ’Alice’ but no ’Alice’ votes are found
(regardless of the cryptographic primitives used)

• We need to measure the effect of the cryptographic primitives

Ideal tallying functionality
• Ballots cast by VHon are treated normally

• Ballots cast by A are added to the result

• Also performs weeding of double votes based on the extracted credential

• If b = 0 votes with sk∗j are not counted

• If b = 1 votes with sk∗j are counted

E-Voting Privacy - Decentralized voting Coercion Resistance 36 / 60

JCJ evolution

Main drawback Quadratic tallying complexity: O
(
v2
)
+O(nv) for

duplicate detection and tallying

Goal O(n+ v)

3 approaches for better efficiency:

Anonymity sets
The ballot contains

• The current credential
• The real credential from the voter roll (rerandomized)
• Some β − 1 other random credentials from the BB
• The PET takes place only among the credentials of the ballot

E-Voting Privacy - Decentralized voting Coercion Resistance 37 / 60

JCJ evolution (cont’d)

Blinded hashing
• The credential [σ] is blinded to obtain [σ]z

• The value z is jointly computed by the RA members

• Instead of PET, [σ]z is decrypted to obtain σz (credential fingerprint)

• This fingerprint is sent through a hashtable {(σz ,b)}
• For verifiability: σz is made public so that everybody can check the hashtable

Vulnerable to the tagging attack (Pfitzmann)

• A forces a voter to reveal the credential
• Then A posts two ballots one with [σ] and one with [σ2]

• Two fingerprints will be produced σz and one with σ2z

• A squares all elements in the BB.
• If a square matches another element and both have been discarded then A
learns that σ was fake

Note: This attack applies only to fake credentials, not duplicates
So O

(
v2

)
becomes O(v)

E-Voting Privacy - Decentralized voting Coercion Resistance 38 / 60

JCJ evolution (cont’d)

Structured credentials
Check of validity is self contained in the credential

• A credential is a tuple (r ←$ Zq, A←$ G, B = Ay, C = Ax+rxy)

where x, y ←$ Zq are secret keys of the RA
• r should be kept secret by the voter
• A fake credential can be made by selecting a new r

• If (r,A,B,C) is valid then (r,Al, Bl, Cl) is valid
• b = ([vt], [A], [Ar], [Br], [C], Or) = (·, U, V,W,Z, ·)
• Duplicates are identified by or

• Ballot validity: if Z · U−x ·W−x decrypts to 1

E-Voting Privacy - Decentralized voting Coercion Resistance 39 / 60

Decentralized voting

Introduction

2 Voting paradigms

• Large scale elections
• Involvement of authorities (mixing / tallying)
• Trust required for some properties
• Each voter is only interested to cast their ballot (vote & go)
• Existence of BB: contains all voting public data (broadcast channel
with memory)

• Small(er) scale elections (boardroom)
• Conducted by the voters themselves
• No entity plays a special part
• Robustness is more important: A voter cannot disrupt the election
• Private channels lead to disputes

Can these two paradigms be combined?

E-Voting Privacy - Decentralized voting Decentralized voting 40 / 60

Desirable properties for decentralized elections - [KY02]

• Self-Tallying (open tallying)
Any (external) entity should be able to count the ballots
(Implies verifiability)

• Perfect Ballot Secrecy
The partial election result for a particular subset of voters can be
obtained only by a coalition that contains the rest of the voters

• Dispute-Freeness Embedded mechanisms avert disputes and
make the participants follow the protocol (accountability)

Can these properties be achieved while minimizing communication
complexity and voter-to-voter interaction?

E-Voting Privacy - Decentralized voting Decentralized voting 41 / 60

Relationships

Theorem
Self-tallying is incompatible with robustness and privacy (at the same time)

Assume: Self-tallying and robust
Assume: n− 1 out of n voters show up
By self tallying: Anyone can compute the result
But: The same computation can take place even if all voters show up
This reveals the preference of the last (any) voter

Theorem
Robustness through threshold secret sharing is incompatible with perfect
ballot secrecy

For perfect ballot secrecy the threshold must be set to n

But this is not robust

A solution: Decentralized voting with a BB (can be replaced with a
blockchain)

E-Voting Privacy - Decentralized voting Decentralized voting 42 / 60

Anonymous Voting by 2-Round Public Discussion - [HRZ10]

Preparation
Select a group G = ⟨g⟩

Each voter has an identity Vi
Selects ai ←$ Zq

Round 1 - Commitment
Each Vi posts gai ,NIZK{(ai), gai}

When this phase ends compute:∏i−1
j=1 g

ai/
∏n

j=i+1 g
ai = gyi

for some unknown yi ∈ Zq

Round 2 - Voting
Each Vi selects vti ∈ {0, 1} and
posts (gyi)aigvti

Round 3 - Self-tallying
Everyone computes∏n

i=1(g
yi)aigvti =

∏n
i=1 g

vti =

g
∑n

i=1 vti

Solve a simple DLP

E-Voting Privacy - Decentralized voting Decentralized voting 43 / 60

Analysis [HRZ10]

Correctness

n∑
i=1

aiyi =

n∑
i=1

∑
j<i

aiaj −
n∑

i=1

∑
j>i

aiaj = 0 since: yi =
∑
j<i

aj −
∑
j>i

aj

Problems
Robustness: If someone refuses to vote then the result cannot be
computed

Fairness: The last voter can learn the result
E-Voting Privacy - Decentralized voting Decentralized voting 44 / 60

Improvements for robustness and fairness [KSRH12]

Robustness
Assume that only voters in L have voted.

Recovery Round
Each Vi ∈ L compute:

ĥi =

∏
j∈{i+1,n}\L gaj∏
j∈{1,i−1}\L gaj

and posts cancellation tokes ĥai
i ,NIZK{(ai) : logggai = logĥĥ

ai}

Tallying becomes: V =
∏n

i=1 bi =
∏

i∈L ĥai
i (gyi)

aigvi = g
∑

i=1 vi

E-Voting Privacy - Decentralized voting Decentralized voting 45 / 60

Open Vote Network [MSH17]

• Implementation of [HRZ10] using Ethereum
• Smart contracts (voting, registration, tallying)
• Voters are authenticated with their Ethereum user-controlled
accounts

• Ethereum restrictions:
• integers of 256 bits
• expensive cryptographic computations
• one vote or six registrations per block
• small number of allowed local variables
• order of transactions in a block and timers

• Maximum number of voters: 50 (due to gas limit)
• Linear number of operations for Tally and Voter List

• Cost per voter: 0.73$

E-Voting Privacy - Decentralized voting Decentralized voting 46 / 60

Scalable Open Vote Network [SG20]

Improvements
• Organize voters in Merkle
Tree only the root is stored
(256 bits)

• Instead of voter list a voter
provides a proof of
membership

• Tally off-chain by an
untrusted tallier

• Publish computation trace
in Merkle Tree ((i, ti))

• Subject to verification

E-Voting Privacy - Decentralized voting Decentralized voting 47 / 60

Blockchain and voting i

Conceptual similarity between blockchain and the BB

• Append-only
• Broadcast channel
• No central authority - anyone can be a miner (given enough
computing power)

• Pseudonymity

Good for universal/individual verifiability (recorded as cast)

But...

• Registration/authentication/eligibility verifiability are inherently
centralized

• Does not help with verifying voter intent
• Does not help with coercion-resistance / receipt-freeness

E-Voting Privacy - Decentralized voting Decentralized voting 48 / 60

Blockchain and voting ii

• Intensifies threats associated with everlasting privacy

• Is it actually decentralized? (concentration of mining power)

To sum up... ’using Blockchain for voting solves a small part of the
problem with an unnecessarily big hammer’ (Ben Adida, 2017)

However... it might be useful for different types of elections - new
election paradigms on a smaller scale with many different
permission-types of blockchains

E-Voting Privacy - Decentralized voting Decentralized voting 49 / 60

Relations between properties

Verifiability i

One can have IV without UV
• Construct a scheme with (vti, ri)← Vote(i,vti)

• Individual verifiability because of ri
• Allows ballots stuffing

One can have UV without IV if everyone votes
• Construct a scheme with vti ← Vote(i,vti)

• Everybody can calculate the same tally
• Clash for same preferences

E-Voting Privacy - Decentralized voting Relations between properties 50 / 60

Verifiability ii

EV implies IV

• Nobody can construct a ballot unless they know ski (private
voter credential)

• ski allows individual verifiability

E-Voting Privacy - Decentralized voting Relations between properties 51 / 60

Verifiability and Privacy i

Universal verifibiality is incompatible with unconditional privacy
• Unconstrained A
• Compute election tally of a sublist of n− 1 voters
• Decryption and comparison with the tally of n voters
• Reveal the option of the remaining voter

E-Voting Privacy - Decentralized voting Relations between properties 52 / 60

Verifiability and Privacy ii

Privacy implies individual verifiability
• Assume no individual verifiability
• A corrupt EA can replace all ballots except one
• Learn the particular preference

Receipt-freeness is incompatible with universal/individual
verifiability
• Encryption randomness can be used as a receipt
• Without randomness: receipt-freeness
• With randomness: verifiability
• No private or anonymous channels are used

E-Voting Privacy - Decentralized voting Relations between properties 53 / 60

Privacy

• Receipt freeness implies privacy
• Everlasting privacy implies privacy
• The reverse does not hold
• Everlasting privacy is related to coercion resistance
• Coercion resistance and receipt-freeness: Depends on the model

E-Voting Privacy - Decentralized voting Relations between properties 54 / 60

Overview of relationships

E-Voting Privacy - Decentralized voting Relations between properties 55 / 60

Open questions

• Security Analysis of Zeus
• Check if the pitfalls of the Fiat - Shamir Heuristic apply
• Formal proof of verifiability and privacy
• Security issues

• Decentralized voting with coercion resistance
• Ring signatures
• Self-tallying incompatibility

• Relations between properties
• Formal proofs

E-Voting Privacy - Decentralized voting Relations between properties 56 / 60

References

Βιβλιογραφία i

Myrto Arapinis, Véronique Cortier, Steve Kremer, and Mark Ryan,
Practical everlasting privacy, Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 7796 LNCS, 2013, pp. 21–40.

David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira,
and Bogdan Warinschi, Sok: A comprehensive analysis of
game-based ballot privacy definitions, 2015 IEEE Symposium on
Security and Privacy, 2015, pp. 499–516.

Mihir Bellare and Amit Sahai, Non-malleable encryption:
Equivalence between two notions, and an
indistinguishability-based characterization, Advances in
Cryptology — CRYPTO’ 99 (Michael Wiener, ed.).

E-Voting Privacy - Decentralized voting References 57 / 60

Βιβλιογραφία ii

Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David
Galindo, Beleniosrf: A non-interactive receipt-free electronic
voting scheme, Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 1614–1625.

Véronique Cortier and Ben Smyth, Attacking and fixing helios: An
analysis of ballot secrecy, J. Comput. Secur. (2013), 89–148.

Denise Demirel, J Van De Graaf, and R Araújo, Improving Helios
with Everlasting Privacy Towards the Public, EVT/WOTE’12
Proceedings of the 2012 international conference on Electronic
Voting Technology/Workshop on Trustworthy Elections (2012).

Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta, A practical
secret voting scheme for large scale elections, AUSCRYPT
(Jennifer Seberry and Yuliang Zheng, eds.), LNCS, Springer, 1992,
pp. 244–251.

E-Voting Privacy - Decentralized voting References 58 / 60

Βιβλιογραφία iii

Feng Hao, Peter Ryan, and Piotr Zielinski, Anonymous voting by
two-round public discussion, Information Security, IET 4 (2010),
62 – 67.
Martin Hirt and Kazue Sako, Efficient receipt-free voting based on
homomorphic encryption, EUROCRYPT 2000.

Ari Juels, Dario Catalano, and Markus Jakobsson,
Coercion-resistant electronic elections, Proceedings of the 2005
ACM Workshop on Privacy in the Electronic Society, WPES 2005,
Alexandria, VA, USA, November 7, 2005, ACM, 2005, pp. 61–70.

Oksana Kulyk, Vanessa Teague, and Melanie Volkamer, Extending
helios towards private eligibility verifiability, VoteID, Lecture
Notes in Computer Science, vol. 9269, Springer, 2015, pp. 57–73.

Aggelos Kiayias and Moti Yung, Self-tallying elections and perfect
ballot secrecy, Public Key Cryptography, 2002, pp. 141–158.

E-Voting Privacy - Decentralized voting References 59 / 60

Βιβλιογραφία iv

Tal Moran and Moni Naor, Receipt-Free Universally-Verifiable
Voting with Everlasting Privacy, 2006, pp. 373–392.

Patrick McCorry, Siamak Shahandashti, and Feng Hao, A smart
contract for boardroom voting with maximum voter privacy,
pp. 357–375, 01 2017.

Mohamed Seifelnasr and Hisham Galal, Scalable open-vote
network on ethereum, pp. 436–450, 08 2020.

E-Voting Privacy - Decentralized voting References 60 / 60

	Privacy
	Everlasting Privacy
	Helios Extensions for receipt-freeness and participation privacy
	Coercion Resistance
	Decentralized voting
	Relations between properties
	References

