(S4 [

\Aea (€ la Whoun Ages m %eacles v oy 1 NSy

Te&e «<uN\k < "lﬁl@ulm.—(—; GOOWR erweu\ Goven€ |
TR R
/1/1,,@1 b FRY W4 Schewe
/_/-_/\./__/\

(+ a b) - tf°8€‘?a‘m _19 “al—? v b

(+ (¢ 2 3) 5) _

k\;o(FVO(cJu\t_ G‘Q"H—-glG?(u. révw Glee w.

TeLIC AVgle~ alo

(deline (kwo-timer x) -
S (boo-bmr 5) 0 ~> 10

(+ » x))
yﬁ?»&%ouf ‘l‘ﬁ) CBWC! > MCl7 Or) (e,".' #’{) HhA
/NieteC) (e bc)=bs (l“"'u“ (x)

a = ((czv /s) (cdv G‘), ,(b =, (+ = X))

(Cw’ 1°@s)-(1239

Av-lSZoquv'n
S /

(65)

Exercise

Ezercise 16.23

Explain why the test for termination within random-data is (negative? tar-

get).

16.8 Escaping from Flat Recursions

Ly

The call/cc operator gives the ability to escape from recursive computations
while basically throwing out all the work that has stacked up. A simple exam-
ple clarifies in what sense the mechanism avoids doing pending computations.
We look at the problem of taking the product of a list of numbers and adding

the number n to the product if the result is nonzero:
" AN i AR 2« ol

(product+ 5 ’(3 6 2 7)) = (+ 5 252) == 257
(product+ 7 (2 3 0 8)) => 0

e -
o B 4T &K - 0 0 4\, L prrorelects B O

Here is the solution in a functional style:

Program 16.11 product+

((null? nums) 1)¥&

(else (* (car nums) (product (cdr nums))))))))

(let ((prod (product nums)))
(if (zero? prod) 0 (+ n prod))))))

This solution can be improved by adding a test to determine if one of the
values in the list is zero. This stops the recursion upon encountering the first
zero. This version is in Program 16.12. Consider the following subtle fact:
Finding a zero in the list does not stop the computation of product. In fact,
what happens is that if the first zero is in the kth position, then there are
k — 1 multiplications using zero. This is because the context of the product

Introduction to Continuations

oV
_(define product+ o ae\@\‘ \‘
55t lambda (n nums) ‘\‘\C' Qe 0‘ o«
e “I A = {e, a?
etrec it W W aw
‘((product (lambda (nums) M g
(cond 65“,’) 7

Program 16.12 product+ @

(define product+
(lambda (n nums)

___‘ (letrec : f"“ P_
)05\1‘” ((product (lambda (nums) 08 " ow
. v ved (cond (f\;uf;*c»‘”“w
r

4. Me"° ((null? nums) 1) / 2]

((zero? (car nums)) 0)

G

a) ALGT0S - o Mo (else (* (carn‘m)_ip;zgcm_c_t(cch-\rms)))))ﬁ)’
%0 fb\\“ Mg <.au- (let ((prod (product nums)))
aﬁq&«‘“ s> k (if (zero? prod) 0 (+ n prod))))))
~N’\7N e h ; ; e Vg :
N u€ 2 \.(d#*- invocations includes k — 1 multiplications. When the zero is found, each of
e , the k — 1 waiting multiplications must still be done. Iéwu
(S o ~ Is it possible to exit the invocation of product so that the result causes no Ao
o N A of 5 waiting multiplications to occur? A solution is in Program 16.13. Consider
e (% 5O “ “the invocation (+ 100 Zpr:Huct-b 10°(23406 7))). Since the list of @‘wéo‘;
7. %4 P \oe numbers contains a 0, the continuation, which is the value of ;‘ﬂ g
e
N (escaper 6'3,67 B\L
vk (lambda (0) :
+ 100
i a6 o)) (El)))v _ ' ol
(* 9 (?"’A“ is invoked, and the result is 100. This follows because the continuation is

| ‘] being invoked on 0. If, however, no zero is found, then (product nums)

terminates normally, and (+ n prod) is returned as the value of (receiver

<ep>). Since prod cannot be zero, the result returned is (+ n prod). The

i let expression can be shortened to (+ n (product nums)). This version is in
2 fio Oﬂ Program 16.14.

We see that finding a zero in the list produces a value to pass to the contin-

3 o uation formed from the invocation of (call/cc receiver) and finishes the
oA ki ofd‘”" computatlon of product+ M
) UL “' =
N\ \‘K\A T oglbh AR
| \
o @\
+ > 5
3y et Jio wdepa (100 (product’ 10 *(r340¢€)
29
07‘?' o 1\@[.,‘4‘ OV~ A (n nums)
gn ¥V @1
) /\AW /n UaAk quws "M‘WQV‘M“" 145 (O “m
e GO OB
; 8 ‘ " 0 16.8 Escaping from Flat Recursiov+ 545
X o
—(e.,\u‘ \“ : - /,\a Q%
Qorae? i po e T # 1o '@ 34 060
3 2 'K}J()\l @ (ﬂTaJU“ ,0 ')
\ B 1 S
0 o Jﬂbﬂ‘&m ot QAo (yftrt e (C"'” Jex veg
eVt
suhy o’ Qo (Rasicle @) (100) R T
3
Gk Gve b (esaqer \)‘6

((aﬂl"j“ (ﬂ)
(+ 100 n))

‘r

Program 16.13 product+ @

e\)’
« 99(21‘ 0] . o~ - ({cﬂ,‘-‘lﬂ

A\ Q,Q (define product+ a2 0

fre ‘N é‘(/" (lambda (n nums) Qo ot L o
% 0 Gf‘(v (let ((receiver e G

‘\af (lambda (exit-on-zero)
: qu’V‘ i (letrec

(]S eﬁt ((product (lambda (nums)

Contest

(cond

((null? nums) 1)

((zero? (car nums)) (exit-on-zero 0))
(else (* (car nums)

(product (cdr nums))))))))
(let ((prod (product nums)))
(if (zero? prod) 0 (+ n prod)))))))
(call/cc receiver))))

Program 16.14 product+

&
(define product+ o g
£lambda (n nums) y, g S e
(let ((receiver : oF
(lambda (exit-on-zero) ey ‘KA“'
{letrec B o
“({product (lambda (nums) s

{cond
“({null? nums) 1)
((zero? (car nums)) (exit-on-zero 0))
Lelse (* (car nums)
(product (cdr nums)))))»)))
(+ n (product nums))))))
€call/cc receiver))))

16.9 Escaping from Deep Recursions

546

Let us take a look at a slightly more complicated example. The problem is to
redefine product+ for a larger class of lists. Specifically, we allow deep lists
of numbers. Thus we can invoke

(product+ 6 *((12) (11 (31 1)) (((((110)1)4)1) 1))

Introduction to Continuations

(68)

16.4 Continuations from Contexts affdﬁape Procedures

CO—H/CC g«.-.-m--\c---y(f;.Ebl)

(;:LH /cc
Iy

yeweN”

We are about to discuss call-with-current-continuation (or call/cc). If
call/cc is not available on your Scheme, define it as follows:

Program 16.1 call/cc

(define call/cc call-with-current-continuation)

call/cc is a procedure of one argument; we call the argument a receiver.
The receiver is a procedure of one argument. Its argument is called a con-
tinuation. The continuation is also a procedure of one argument. Regardless
of how we form the continuation, (call/cc toceivoﬂ is the same as (re-
ceiver continuation). What is left is to understand how continuation is
formed. To form continuation, we first form the context, ¢, of (call/cc re-
ceiver) in some expression E. We then invoke (escaper c), which forms
continuation. We have now completely characterized call/cc. All we have
left to do is see how our understanding of how to form continuations leads us
to determine correctly the evaluation of expressions using call/cc.

Consider the following expression:

(+3 (s 4 (call/ee) X (¥ g © veiver)

The context of (call/cc r) is the procedure, which is the value of

(1anb&a () ¢+3¢40) gua Y% qulend Qov (C"“/cc ")
so our original expression means the same as:

(+ 3 (# 4 (r (escaper (lambda ([J) (+ 3 (* 4)N (évh n g,\lmff\"‘)

That is, after the system forms the context of (call/cc r), the system passes
1t as an escape procedure to r. Since this is now just a simple invocation, all
the rules for procedure invocation apply. A little practice is helpful. Let us
consider r to be the value of (1ambda (continuation) 6). What is the value
of the expression derived from the call/cc expression above?

(+ 3 (* 4 ((lambda (continuation) 6)
(escaper (lambda ([0) (+ 3 (= 4 0)))))))

16.4 Continuations from Contezts and Escape Procedures 527

escaqy

Yeceive YV Govbwua $9

r) Y= Yeceror”

)ﬁ,EB])

SN

Gainuate’

E4)
[cmrvee]

afe o Ju — Yecehvov™—

-L»

ore WWM Guhnwafie

[

oL ar;umu/'

ConfmuaMa- (Call/cc rece?m/) '

Vi

gxkrmi a; Gweeh € Qo

(callfec (e) erts ,5

S
i

GeaWw ij/:y[uo(—/ﬂ'om,,

uar imwole @Scapw G)-
BT
il

7 R

(GBE:LQ%:ﬂL@

Tl
i TiLah () (P54 BEPE

ot £ X\VG’KA e @

£ b AE c)))

G304 (r (eﬁngc)))# Gna b 4 6))-27

waa"; %

e A - (lobdon @obruat>) 6). T

e (bl GG 6))

i @ €5 €4
Gy (x4 l{\@ﬁmﬂ (\ombdo- @) €5 7

\iL

3 (x4 @\;/»%* :
, m(

//J;/(;) 3 Gu)ﬁ) 6)> 27

((e@ (‘Q\u

W /\'AV“/M
Y = (lodde (Gunmst) (2 (awwe 6))

@ ~

éSG«é (x
] tee s

/ﬁo 6("7 ﬁpoa(%(/(rc o, Tedgferre (P

<MM> lmlm (n rw-m/b)v\/ . e

Ao vTane 2 elad ted
pvnduef—(— PR v pe 6/&‘7‘4”@/'

Gobe b Gapnmafion
(roe” M selewo 4o ?‘vCF7‘

e

vei W wmieahe A%
S~

((call/e yeceiver)

528

The value of

((lambda (continuation) 6)
(escaper (lambda ([1) (+ 3 (* 4 [1)))))

is 6; it does not use continuation, so the result is 27 (i.e., 3+ 4%6). What
about this one?

(+ 3 (*» 4 ((lambda (continuation) (continuation 6))
(escaper (lambda ([0) (+ 3 (* 4 [1)))))))

The explicit invocation of continuation on 6 leads to

((escaper (lambda ([1) (+ 3 (* 4 [1)))) 6)
and then the result is 27. Is this one any different?

(+ 3 (* 4 ((lambda (continuation) (+ 2 (continuation 6)))
(escaper (lambda ([J) (+ 3 (* 4 [1)))))))

The explicit invocation of continuation on 6 leads to

((escaper (lambda ([1) (+ 3 (* 4 [1)))) 6)

and then the result is 27. Remember, an escape invocation abandons its
context, so (lambda (O) (+ 3 (* 4 (+ 2 O)))) is abandoned. contin-
uation has the value (escaper (lambda ((0) ... O ...)). Because the
context of a call/cc invocation is turned into an escape procedure, we use
the notation <ep> for procedures that get passed to r.

Scheme supports procedures as values, and since <ep> is a procedure, it is
possible to invoke the same continuation more than once. In the next section
there are three experiments with call/cc, and in the last experiment the
same continuation is invoked twice. The countdown example of Chapter 17
shows what happens when the same continuation is invoked many times.

Introduction to Continuations

