Προηγμένα Θέματα Αλγορίθμων
Ανακοινώσεις
Ομιλία Kamath Gautam, Πέμπτη 18/7, ώρα 17:00, Αμφιθέατρο Πολυμέσων
Σας προσκαλούμε (και συνιστούμε ιδιαίτερα) να παρακολουθήσετε την ομιλία του Καθ. Kamath Gautam, University of Waterloo ( http://www.gautamkamath.com ), που θα γίνει την Πέμπτη 18/7, 17:00 - 18:30, στο Αμφιθέατρο Πολυμέσων, στο ισόγειο της κεντρικής βιβλιοθήκης.
Η ομιλία αφορά στο σχεδιασμό differentially private learning αλγορίθμων για κάποιες σημαντικές κλάσεις πολυδιάστατων κατανομών. Ακολουθούν ο τίτλος και μια περίληψη της ομιλίας, και ένα σύντομο βιογραφικό του ομιλητή.
Σας περιμένουμε όλους την Πέμπτη!
Δημήτρης Φωτάκης
TITLE: Privately Learning High-Dimensional Distributions
ABSTRACT: We present novel, computationally efficient, and
differentially private algorithms for two fundamental high-dimensional
learning problems: learning a multivariate Gaussian in R^d and learning
a product distribution in {0,1}^d in total variation distance. The
sample complexity of our algorithms nearly matches the sample complexity
of the optimal non-private learners for these tasks in a wide range of
parameters. Thus, our results show that private comes essentially for
free for these problems, providing a counterpoint to the many negative
results showing that privacy is often costly in high dimensions. Our
algorithms introduce a novel technical approach to reducing the
sensitivity of the estimation procedure that we call recursive private
preconditioning, which may find additional applications.
Joint work with Jerry Li, Vikrant Singhal, and Jonathan Ullman. Preprint
available here: https://arxiv.org/abs/1805.00216.
BIO: Gautam Kamath is an assistant professor at the David R.
Cheriton School of Computer Science at the University of Waterloo. He
has a B.S. in Computer Science and Electrical and Computer Engineering
from Cornell University, and an M.S. and Ph.D. in Computer Science from
the Massachusetts Institute of Technology, where he was advised by
Constantinos Daskalakis. His research interests lie in theoretical
computer science and principled tools for statistical data science,
particularly concerns such as high-dimensional data, robustness, and
privacy. He was a Microsoft Research Fellow, as a part of the
Simons-Berkeley Research Fellowship Program at the Simons Institute for
the Theory of Computing. He was awarded the Best Student Presentation
Award at the ACM Symposium on Theory of Computing in 2012.